November 23, 2015



United States Environmental Protection Agency ("USEPA") Region 1 Water Technical Unit (SMR-04) 5 Post Office Square, Suite 100 Boston, Massachusetts 02109-3912

Re: Initial Whole Effluent Toxicity ("WET") Testing

Veolia Energy North America Kendall Green Energy LLC 265 First Street Cambridge, MA 02142 NPDES Permit No. MA0004898

To Whom It May Concern:

AMEC Massachusetts, Inc. ("AMEC"), on behalf of Kendall Green Energy LLC ("Kendall"), is providing this notification of initial WET testing as required in the facility's National Pollutant Discharge Elimination System ("NPDES") permit Effective on February 1, 2011.

Kendall began discharge of ultrafiltration ("UF") backwash and reverse osmosis ("RO") reject wastewater near the end of August 2015 and scheduled sampling for WET testing in the beginning of September. The sampling contractor attempted to obtain a composite sample of discharge at the beginning of September, but was unsuccessful due to the configuration of the outfall sampling manifold and the volume of wastewater that is needed for WET testing. Since this was Kendall's first WET testing sampling event, sampling manifold limitations were previously unknown. In response, Kendall redesigned its outfall sampling station and installed a new sampling manifold to allow for proper sampling. This manifold was installed mid-September and sampling rescheduled for September 20, 2015.

Composite samples for 3<sup>rd</sup> quarter 2015 WET testing were successfully collected from September 20<sup>th</sup> to 21<sup>st</sup>, 22<sup>nd</sup> to 23<sup>rd</sup> and 24<sup>th</sup> to 25<sup>th</sup> and delivered to the laboratory for analysis. The M. Beryllina assay was started on September 22, 2015 and completed on September 29, 2015. The *A. punctulata* assay was started on September 24, 2015, but failed to meet the test acceptability criterion for fertilization in the receiving water diluent and all test concentrations. Samples were again collected from October 15<sup>th</sup> to 16<sup>th</sup> and the *A. punctulata* assay was successfully repeated starting October 16, 2015 using alternate receiving water from the Hampton/Seabrook Estuary.

Kendall informed Ms. Shelley Puleo of the above events in a phone conversation followed by an email on November 10, 2015 to ensure USEPA that their 3<sup>rd</sup> quarter 2015 WET testing results would be submitted.

Per the requirements of Part I.A. Effluent Limitations and Monitoring Requirements of Kendall's NPDES Permit, WET testing results were as follows:

AMEC Massachusetts, Inc. 271 Mill Road, 3<sup>rd</sup> Floor Chelmsford, MA 01824 +1 978-692-9090 amecfw.com **Acute Toxicity Evaluation** 

| Species     | LC-50 48 Hours |
|-------------|----------------|
| M. Bryllina | >100%          |

**Chronic Toxicity Evaluation** 

| Species       | C-NOEC |
|---------------|--------|
| M. Bryllina   | >100%  |
| A. Punctulata | 50%    |

These tests followed the requirements of Attachment C2 for marine species due to the salinity of the intake water being greater than one part per trillion. WET test sampling for the 4<sup>th</sup> quarter 2015 was conducted on November 13, 2015.

Please feel free to contact me if you have any questions or require any additional information. Thank you for your consideration.

Sincerely,

AMEC By,

David Lachance, EIT Senior Program Director Phone: 978-392-5360

David.Lachance@amec.com

Enclosures: NPDES Bioassay, October 30, 2015

Cc: Sean Caldwell, Veolia

Jim Harrison, Veolia Paul Richard, AMEC



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

James Harrison Veolia 265 First Street Cambridge, MA 02142

RE: NPDES Bioassay (N/A)

ESS Laboratory Work Order Number: 1509567

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

**REVIEWED** 

By ESS Laboratory at 2:06 pm, Oct 30, 2015

### **Analytical Summary**

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with NELAC Standards, A2LA and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

**Subcontracted Analyses** 

EnviroSystems, Inc. - Hampton, NH Microbac Laboratories - Maryville, TN Bioassay Total Organic Carbon



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1509567

## **SAMPLE RECEIPT**

The following samples were received on September 21, 2015 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the Guidelines Establishing Test Procedures for the Analysis of Pollutants, 40 CFR Part 136, as amended.

| Lab Number | Sample Name                   | Matrix        | Analysis                                           |
|------------|-------------------------------|---------------|----------------------------------------------------|
| 1509567-01 | Receiving Water               | Surface Water | §, 120.1, 200.7, 2320B, 2540B, 2540D, 350.1, Field |
| 1509567-02 | Final Effluent                | Waste Water   | §, 120.1, 200.7, 2320B, 2540B, 2540D, 350.1, Field |
| 1509567-03 | Receiving Water               | Surface Water | §, 120.1, 200.7, 2320B, 2540B, 2540D, 350.1, Field |
| 1509567-04 | Final Effluent                | Waste Water   | §, 120.1, 200.7, 2320B, 2540B, 2540D, 350.1, Field |
| 1509567-05 | Receiving Water               | Aqueous       | §, 120.1, 200.7, 2320B, 2540B, 2540D, 350.1, Field |
| 1509567-06 | Final Effluent                | Aqueous       | §, 120.1, 200.7, 2320B, 2540B, 2540D, 350.1, Field |
| 1509567-07 | Effluent Start                | Aqueous       | n/a                                                |
| 1509567-08 | Receiving Water Start         | Aqueous       | n/a                                                |
| 1509567-09 | Effluent First Renewal        | Aqueous       | n/a                                                |
| 1509567-10 | Receiving Water First Renewal | Aqueous       | n/a                                                |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1509567

### **PROJECT NARRATIVE**

#### **Classical Chemistry**

| 1509567-03 | Estimated value. Sample hold times were exceeded (H).                                             |
|------------|---------------------------------------------------------------------------------------------------|
|            | Ammonia as N, Conductivity, Total Solids, Total Suspended Solids                                  |
| 1509567-03 | The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and |
|            | Residual Chlorine is fifteen minutes.                                                             |
|            | Alkalinity as CaCO3                                                                               |
| 1509567-04 | Estimated value. Sample hold times were exceeded (H).                                             |
|            | Ammonia as N, Conductivity, Total Solids, Total Suspended Solids                                  |
| 1509567-04 | The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and |
|            | Residual Chlorine is fifteen minutes.                                                             |
|            | Alkalinity as CaCO3                                                                               |
| 1509567-05 | Estimated value. Sample hold times were exceeded (H).                                             |
|            | Ammonia as N, Conductivity, Total Solids, Total Suspended Solids                                  |
| 1509567-05 | The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and |
|            | Residual Chlorine is fifteen minutes.                                                             |
|            | Alkalinity as CaCO3                                                                               |
| 1509567-06 | Estimated value. Sample hold times were exceeded (H).                                             |
|            | Ammonia as N, Conductivity, Total Solids, Total Suspended Solids                                  |
| 1509567-06 | The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and |
|            | Residual Chlorine is fifteen minutes.                                                             |

No other observations noted.

**End of Project Narrative.** 

### **DATA USABILITY LINKS**

**Definitions of Quality Control Parameters** 

Semivolatile Organics Internal Standard Information

Alkalinity as CaCO3

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

**EPH and VPH Alkane Lists** 

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1509567

#### **CURRENT SW-846 METHODOLOGY VERSIONS**

#### **Analytical Methods**

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015D - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

## **Prep Methods**

3005A - Aqueous ICP Digestion

 $3020\mbox{A}$  - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay Client Sample ID: Receiving Water Date Sampled: 09/21/15 13:00

Percent Solids: N/A

ESS Laboratory Work Order: 1509567 ESS Laboratory Sample ID: 1509567-01

Sample Matrix: Surface Water

Units: mg/L

Extraction Method: 3005A/200.7

All methods used are in accordance with 40 CFR 136.

## **Total Metals**

MA - Permit

|           |                      |            |        | 14177 - 1 (111 | 111       |         |                |     |     |              |  |
|-----------|----------------------|------------|--------|----------------|-----------|---------|----------------|-----|-----|--------------|--|
| Analyte   | Results (MRL)        | <b>MDL</b> | Method | <u>Limit</u>   | <u>DF</u> | Analyst |                | I/V | F/V | <b>Batch</b> |  |
| Aluminum  | <b>0.036</b> (0.020) |            | 200.7  | 0.02           | 1         | KJK     | 09/23/15 20:32 | 50  | 10  | CI52327      |  |
| Cadmium   | ND (0.0010)          |            | 200.7  | 0.001          | 1         | KJK     | 09/23/15 20:32 | 50  | 10  | CI52327      |  |
| Calcium   | <b>40.2</b> (0.040)  |            | 200.7  | 0.05           | 1         | KJK     | 09/23/15 20:32 | 50  | 10  | CI52327      |  |
| Chromium  | ND (0.002)           |            | 200.7  | 0.005          | 1         | KJK     | 09/23/15 20:32 | 50  | 10  | CI52327      |  |
| Copper    | <b>0.004</b> (0.002) |            | 200.7  | 0.0025         | 1         | KJK     | 09/23/15 20:32 | 50  | 10  | CI52327      |  |
| Hardness  | <b>254</b> (0.265)   |            | 200.7  |                | 1         | KJK     | 09/23/15 20:32 | 1   | 1   | [CALC]       |  |
| Lead      | ND (0.004)           |            | 200.7  | 0.005          | 1         | KJK     | 09/23/15 20:32 | 50  | 10  | CI52327      |  |
| Magnesium | <b>37.3</b> (0.040)  |            | 200.7  | 0.05           | 1         | KJK     | 09/23/15 20:32 | 50  | 10  | CI52327      |  |
| Nickel    | ND (0.002)           |            | 200.7  | 0.004          | 1         | KJK     | 09/23/15 20:32 | 50  | 10  | CI52327      |  |
| Zinc      | <b>0.023</b> (0.010) |            | 200.7  | 0.0025         | 1         | KJK     | 09/23/15 20:32 | 50  | 10  | CI52327      |  |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay Client Sample ID: Receiving Water Date Sampled: 09/21/15 13:00

Percent Solids: N/A

**Total Solids** 

**Total Suspended Solids** 

ESS Laboratory Work Order: 1509567 ESS Laboratory Sample ID: 1509567-01

Sample Matrix: Surface Water

1

1

#### All methods used are in accordance with 40 CFR 136.

# **Classical Chemistry**

MA - Permit

|                                |                              |            |                     | 1 <b>1111 - 1 CI II</b> | 1110             |                |                         |               |                  |
|--------------------------------|------------------------------|------------|---------------------|-------------------------|------------------|----------------|-------------------------|---------------|------------------|
| Analyte Alkalinity as CaCO3    | <b>Results (MRL) 39</b> (10) | <u>MDL</u> | <b>Method</b> 2320B | Limit 2                 | <u><b>DF</b></u> | Analyst<br>MJV | Analyzed 09/25/15 16:56 | Units<br>mg/L | Batch<br>CI52539 |
| Ammonia as N                   | <b>0.15</b> (0.10)           |            | 350.1               | 0.1                     | 1                | JLK            | 09/25/15 8:55           | mg/L          | CI52403          |
| Conductivity                   | 1010 (5)                     |            | 120.1               |                         | 1                | EEM            | 09/25/15 11:15          | umhos/cm      | CI52524          |
| Field Dissolved Oxygen         | <b>6.81</b> (N/A)            |            | Field               | 1                       | 1                | MNM            | 09/21/15 13:00          | mg/L          | CI52807          |
| Field pH                       | 7.82 (N/A)                   |            | Field               |                         | 1                | MNM            | 09/21/15 13:00          | S.U.          | CI52807          |
| Field Temperature              | 23.4 (N/A)                   |            | Field               |                         | 1                | MNM            | 09/21/15 13:00          | °C            | CI52807          |
| Salinity                       | 1.10 (N/A)                   |            | Field               |                         | 1                | MNM            | 09/21/15 13:00          | S.U.          | CI52807          |
| <b>Total Organic Carbon</b>    | <b>9.3</b> (0.5)             |            | §                   |                         | 1                | SUB            | 09/29/15 18:55          | mg/L          | CJ50130          |
| <b>Total Residual Chlorine</b> | <b>0.09</b> (N/A)            |            | Field               | 0.05                    | 1                | MNM            | 09/21/15 13:00          | mg/L          | CI52807          |

2540B

2540D

185 Frances Avenue, Cranston, RI 02910-2211

1540 (10)

6 (5)

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

EEM 09/25/15 16:35

EEM 09/25/15 17:10

CI52518

CI52519

mg/L

mg/L



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1509567

Sample Matrix: Waste Water

ESS Laboratory Sample ID: 1509567-02



### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay Client Sample ID: Final Effluent Date Sampled: 09/21/15 08:00

Percent Solids: N/A

1

Extraction Method: 3005A/200.7

All methods used are in accordance with 40 CFR 136.

## **Total Metals**

| MA | _ | <b>Permit</b> |
|----|---|---------------|

Units: mg/L

|                |                      |            |        | MIA - I CIII | 111       |         |                |     |     |              |
|----------------|----------------------|------------|--------|--------------|-----------|---------|----------------|-----|-----|--------------|
| <b>Analyte</b> | Results (MRL)        | <b>MDL</b> | Method | <u>Limit</u> | <u>DF</u> | Analyst | Analyzed       | I/V | F/V | <b>Batch</b> |
| Aluminum       | <b>0.097</b> (0.020) |            | 200.7  | 0.02         | 1         | KJK     | 09/23/15 20:37 | 50  | 10  | CI52327      |
| Cadmium        | ND (0.0010)          |            | 200.7  | 0.001        | 1         | KJK     | 09/23/15 20:37 | 50  | 10  | CI52327      |
| Calcium        | <b>44.9</b> (0.040)  |            | 200.7  | 0.05         | 1         | KJK     | 09/23/15 20:37 | 50  | 10  | CI52327      |
| Chromium       | ND (0.004)           |            | 200.7  | 0.005        | 1         | KJK     | 09/23/15 20:37 | 50  | 10  | CI52327      |
| Copper         | <b>0.032</b> (0.002) |            | 200.7  | 0.0025       | 1         | KJK     | 09/23/15 20:37 | 50  | 10  | CI52327      |
| Hardness       | <b>288</b> (0.265)   |            | 200.7  |              | 1         | KJK     | 09/23/15 20:37 | 1   | 1   | [CALC]       |
| Lead           | <b>0.039</b> (0.004) |            | 200.7  | 0.005        | 1         | KJK     | 09/23/15 20:37 | 50  | 10  | CI52327      |
| Magnesium      | <b>42.8</b> (0.040)  |            | 200.7  | 0.05         | 1         | KJK     | 09/23/15 20:37 | 50  | 10  | CI52327      |
| Nickel         | ND (0.002)           |            | 200.7  | 0.004        | 1         | KJK     | 09/23/15 20:37 | 50  | 10  | CI52327      |
| Zinc           | <b>0.122</b> (0.010) |            | 200.7  | 0.0025       | 1         | KJK     | 09/23/15 20:37 | 50  | 10  | CI52327      |

Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1509567 Client Sample ID: Final Effluent ESS Laboratory Sample ID: 1509567-02 Date Sampled: 09/21/15 08:00

Percent Solids: N/A

**Total Solids** 

**Total Suspended Solids** 

Sample Matrix: Waste Water

1

1

EEM

EEM

#### All methods used are in accordance with 40 CFR 136.

# **Classical Chemistry**

|                             |                              |            |                        | 1VIA - I CI II | 1111             |               |                                |               |                  |
|-----------------------------|------------------------------|------------|------------------------|----------------|------------------|---------------|--------------------------------|---------------|------------------|
| Analyte Alkalinity as CaCO3 | <b>Results (MRL) 60</b> (10) | <u>MDL</u> | <u>Method</u><br>2320B | Limit 2        | <u><b>DF</b></u> | Analys<br>MJV | <b>Analyzed</b> 09/25/15 16:56 | Units<br>mg/L | Batch<br>CI52539 |
| Ammonia as N                | <b>0.15</b> (0.10)           |            | 350.1                  | 0.1            | 1                | JLK           | 09/25/15 8:55                  | mg/L          | CI52403          |
| Conductivity                | <b>970</b> (5)               |            | 120.1                  |                | 1                | EEM           | 09/25/15 11:15                 | umhos/cm      | CI52524          |
| Field Dissolved Oxygen      | 6.01 (N/A)                   |            | Field                  | 1              | 1                | MNM           | 09/21/15 8:00                  | mg/L          | CI52807          |
| Field pH                    | 8.04 (N/A)                   |            | Field                  |                | 1                | MNM           | 09/21/15 8:00                  | S.U.          | CI52807          |
| Field Temperature           | <b>30.2</b> (N/A)            |            | Field                  |                | 1                | MNM           | 09/21/15 8:00                  | °C            | CI52807          |
| Salinity                    | 1.20 (N/A)                   |            | Field                  |                | 1                | MNM           | 09/21/15 8:00                  | S.U.          | CI52807          |
| Total Organic Carbon        | <b>12</b> (0.5)              |            | §                      |                | 1                | SUB           | 09/29/15 19:11                 | mg/L          | CJ50130          |
| Total Residual Chlorine     | <b>0.10</b> (N/A)            |            | Field                  | 0.05           | 1                | MNM           | 09/21/15 8:00                  | mg/L          | CI52807          |

2540B

2540D

MA - Permit

**1540** (10)

9 (5)

09/25/15 16:35

09/25/15 17:10

CI52518

CI52519

mg/L

mg/L



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1509567



## CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay Client Sample ID: Receiving Water Date Sampled: 09/23/15 11:00

Percent Solids: N/A

ESS Laboratory Sample ID: 1509567-03 Sample Matrix: Surface Water Units: mg/L

Extraction Method: 3005A/200.7

All methods used are in accordance with 40 CFR 136.

## **Total Metals**

|           |                      |            |        | MA - Perm    | it        |         |                |            |                                    |         |
|-----------|----------------------|------------|--------|--------------|-----------|---------|----------------|------------|------------------------------------|---------|
| Analyte   | Results (MRL)        | <b>MDL</b> | Method | <u>Limit</u> | <u>DF</u> | Analyst |                | <u>I/V</u> | $\frac{\mathbf{F}/\mathbf{V}}{10}$ | Batch   |
| Aluminum  | <b>0.022</b> (0.020) |            | 200.7  | 0.02         | 1         | KJK     | 10/24/15 23:32 | 50         | 10                                 | CJ52267 |
| Cadmium   | ND (0.0010)          |            | 200.7  | 0.001        | 1         | KJK     | 10/24/15 23:32 | 50         | 10                                 | CJ52267 |
| Calcium   | <b>43.0</b> (0.040)  |            | 200.7  | 0.05         | 1         | KJK     | 10/24/15 23:32 | 50         | 10                                 | CJ52267 |
| Chromium  | ND (0.004)           |            | 200.7  | 0.005        | 1         | KJK     | 10/24/15 23:32 | 50         | 10                                 | CJ52267 |
| Copper    | <b>0.007</b> (0.002) |            | 200.7  | 0.0025       | 1         | KJK     | 10/24/15 23:32 | 50         | 10                                 | CJ52267 |
| Hardness  | <b>302</b> (0.265)   |            | 200.7  |              | 1         | KJK     | 10/24/15 23:32 | 1          | 1                                  | [CALC]  |
| Hardness  | <b>302</b> (0.265)   |            | 200.7  |              | 1         | KJK     | 10/24/15 23:32 | 1          | 1                                  | [CALC]  |
| Lead      | ND (0.004)           |            | 200.7  | 0.005        | 1         | KJK     | 10/24/15 23:32 | 50         | 10                                 | CJ52267 |
| Magnesium | <b>47.3</b> (0.040)  |            | 200.7  | 0.05         | 1         | KJK     | 10/24/15 23:32 | 50         | 10                                 | CJ52267 |
| Nickel    | ND (0.002)           |            | 200.7  | 0.004        | 1         | KJK     | 10/24/15 23:32 | 50         | 10                                 | CJ52267 |
| Zinc      | <b>0.024</b> (0.010) |            | 200.7  | 0.0025       | 1         | KJK     | 10/24/15 23:32 | 50         | 10                                 | CJ52267 |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1509567 Client Sample ID: Receiving Water ESS Laboratory Sample ID: 1509567-03 Date Sampled: 09/23/15 11:00 Sample Matrix: Surface Water

Percent Solids: N/A

#### All methods used are in accordance with 40 CFR 136.

# **Classical Chemistry**

|                         |                      |     |        | MA - Pern    | nit       |         |                 |              |              |
|-------------------------|----------------------|-----|--------|--------------|-----------|---------|-----------------|--------------|--------------|
| <u>Analyte</u>          | Results (MRL)        | MDL | Method | <u>Limit</u> | <u>DF</u> | Analyst | <b>Analyzed</b> | <u>Units</u> | <b>Batch</b> |
| Alkalinity as CaCO3     | <b>HT 59</b> (10)    |     | 2320B  | 2            | 1         | MJV     | 10/24/15 14:19  | mg/L         | CJ52403      |
| Ammonia as N            | <b>H 0.18</b> (0.10) |     | 350.1  | 0.1          | 1         | EEM     | 10/29/15 19:15  | mg/L         | CJ52304      |
| Conductivity            | <b>H 1630</b> (5)    |     | 120.1  |              | 1         | EEM     | 10/26/15 16:15  | umhos/cm     | CJ52618      |
| Field Dissolved Oxygen  | 7.76 (N/A)           |     | Field  | 1            | 1         | MNM     | 09/23/15 11:00  | mg/L         | CJ51545      |
| Field pH                | 7.61 (N/A)           |     | Field  |              | 1         | MNM     | 09/23/15 11:00  | S.U.         | CJ51545      |
| Field Temperature       | <b>24.2</b> (N/A)    |     | Field  |              | 1         | MNM     | 09/23/15 11:00  | °C           | CJ51545      |
| Salinity                | 1.20 (N/A)           |     | Field  |              | 1         | MNM     | 09/23/15 11:00  | S.U.         | CJ51545      |
| Total Organic Carbon    | <b>9.9</b> (0.5)     |     | §      |              | 1         | SUB     | 10/23/15 16:09  | mg/L         | CJ52706      |
| Total Residual Chlorine | <b>0.14</b> (N/A)    |     | Field  | 0.05         | 1         | MNM     | 09/23/15 11:00  | mg/L         | CJ51545      |
| Total Solids            | <b>H 1630</b> (10)   |     | 2540B  |              | 1         | EEM     | 10/26/15 16:55  | mg/L         | CJ52621      |
| Total Suspended Solids  | <b>H</b> ND (5)      |     | 2540D  |              | 1         | EEM     | 10/23/15 11:20  | mg/L         | CJ52226      |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay Client Sample ID: Final Effluent Date Sampled: 09/23/15 08:00

Percent Solids: N/A

ESS Laboratory Work Order: 1509567 ESS Laboratory Sample ID: 1509567-04

Sample Matrix: Waste Water

Units: mg/L

Extraction Method: 3005A/200.7

All methods used are in accordance with 40 CFR 136.

### **Total Metals**

|                |                      |            |        | MA - Perm    | nit       |                |                 |     |     |              |
|----------------|----------------------|------------|--------|--------------|-----------|----------------|-----------------|-----|-----|--------------|
| <u>Analyte</u> | Results (MRL)        | <b>MDL</b> | Method | <u>Limit</u> | <u>DF</u> | <b>Analyst</b> | <b>Analyzed</b> | I/V | F/V | <b>Batch</b> |
| Aluminum       | <b>0.045</b> (0.020) |            | 200.7  | 0.02         | 1         | KJK            | 10/24/15 23:36  | 50  | 10  | CJ52267      |
| Cadmium        | ND (0.0010)          |            | 200.7  | 0.001        | 1         | KJK            | 10/24/15 23:36  | 50  | 10  | CJ52267      |
| Calcium        | <b>44.6</b> (0.040)  |            | 200.7  | 0.05         | 1         | KJK            | 10/24/15 23:36  | 50  | 10  | CJ52267      |
| Chromium       | ND (0.004)           |            | 200.7  | 0.005        | 1         | KJK            | 10/24/15 23:36  | 50  | 10  | CJ52267      |
| Copper         | <b>0.097</b> (0.002) |            | 200.7  | 0.0025       | 1         | KJK            | 10/24/15 23:36  | 50  | 10  | CJ52267      |
| Hardness       | <b>313</b> (0.265)   |            | 200.7  |              | 1         | KJK            | 10/24/15 23:36  | 1   | 1   | [CALC]       |
| Hardness       | <b>313</b> (0.265)   |            | 200.7  |              | 1         | KJK            | 10/24/15 23:36  | 1   | 1   | [CALC]       |
| Lead           | <b>0.042</b> (0.004) |            | 200.7  | 0.005        | 1         | KJK            | 10/24/15 23:36  | 50  | 10  | CJ52267      |
| Magnesium      | <b>49.0</b> (0.040)  |            | 200.7  | 0.05         | 1         | KJK            | 10/24/15 23:36  | 50  | 10  | CJ52267      |
| Nickel         | ND (0.002)           |            | 200.7  | 0.004        | 1         | KJK            | 10/24/15 23:36  | 50  | 10  | CJ52267      |
| Zinc           | <b>0.063</b> (0.010) |            | 200.7  | 0.0025       | 1         | KJK            | 10/24/15 23:36  | 50  | 10  | CJ52267      |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay Client Sample ID: Final Effluent Date Sampled: 09/23/15 08:00

Percent Solids: N/A

Total Suspended Solids

ESS Laboratory Work Order: 1509567 ESS Laboratory Sample ID: 1509567-04

Sample Matrix: Waste Water

1

EEM

10/23/15 11:20

mg/L

CJ52226

#### All methods used are in accordance with 40 CFR 136.

# **Classical Chemistry**

|                                |                      |            |        | MA - Pern    | nit       |                |                |              |              |
|--------------------------------|----------------------|------------|--------|--------------|-----------|----------------|----------------|--------------|--------------|
| <u>Analyte</u>                 | Results (MRL)        | <b>MDL</b> | Method | <u>Limit</u> | <u>DF</u> | <b>Analyst</b> |                | <u>Units</u> | <b>Batch</b> |
| Alkalinity as CaCO3            | <b>HT 58</b> (10)    |            | 2320B  | 2            | 1         | MJV            | 10/24/15 14:19 | mg/L         | CJ52403      |
| Ammonia as N                   | <b>H 0.29</b> (0.10) |            | 350.1  | 0.1          | 1         | EEM            | 10/29/15 19:15 | mg/L         | CJ52304      |
| Conductivity                   | H 1590 (5)           |            | 120.1  |              | 1         | EEM            | 10/26/15 16:15 | umhos/cm     | CJ52618      |
| Field Dissolved Oxygen         | 6.50 (N/A)           |            | Field  | 1            | 1         | MNM            | 09/23/15 8:00  | mg/L         | CJ51545      |
| Field pH                       | 7.35 (N/A)           |            | Field  |              | 1         | MNM            | 09/23/15 8:00  | S.U.         | CJ51545      |
| Field Temperature              | <b>26.3</b> (N/A)    |            | Field  |              | 1         | MNM            | 09/23/15 8:00  | °C           | CJ51545      |
| Salinity                       | 1.40 (N/A)           |            | Field  |              | 1         | MNM            | 09/23/15 8:00  | S.U.         | CJ51545      |
| Total Organic Carbon           | <b>11</b> (0.5)      |            | §      |              | 1         | SUB            | 10/23/15 16:25 | mg/L         | CJ52706      |
| <b>Total Residual Chlorine</b> | <b>0.17</b> (N/A)    |            | Field  | 0.05         | 1         | MNM            | 09/23/15 8:00  | mg/L         | CJ51545      |
| <b>Total Solids</b>            | <b>H 1660</b> (10)   |            | 2540B  |              | 1         | EEM            | 10/26/15 16:55 | mg/L         | CJ52621      |

2540D

H ND (5)

Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay

ESS Laboratory Work Order: 1509567

Client Sample ID: Receiving Water

ESS Laboratory Sample ID: 1509567-05

Date Sampled: 09/25/15 08:55

Sample Matrix: Aqueous

Percent Solids: N/A

lids: N/A

Extraction Method: 3005A/200.7

All methods used are in accordance with 40 CFR 136.

## **Total Metals**

Units: mg/L

|                |                      |            |        | MA - Perm    | it |                |                |           |            |     |              |
|----------------|----------------------|------------|--------|--------------|----|----------------|----------------|-----------|------------|-----|--------------|
| <b>Analyte</b> | Results (MRL)        | <b>MDL</b> | Method | <u>Limit</u> | DF | <b>Analyst</b> | <u>Analyze</u> | <u>ed</u> | <u>I/V</u> | F/V | <b>Batch</b> |
| Aluminum       | <b>0.033</b> (0.020) |            | 200.7  | 0.02         | 1  | KJK            | 10/25/15 0:    | :07       | 50         | 10  | CJ52267      |
| Cadmium        | ND (0.0010)          |            | 200.7  | 0.001        | 1  | KJK            | 10/25/15 0:    | :07       | 50         | 10  | CJ52267      |
| Calcium        | <b>44.9</b> (0.040)  |            | 200.7  | 0.05         | 1  | KJK            | 10/25/15 0:    | :07       | 50         | 10  | CJ52267      |
| Chromium       | ND (0.004)           |            | 200.7  | 0.005        | 1  | KJK            | 10/25/15 0:    | :07       | 50         | 10  | CJ52267      |
| Copper         | <b>0.007</b> (0.002) |            | 200.7  | 0.0025       | 1  | KJK            | 10/25/15 0:    | :07       | 50         | 10  | CJ52267      |
| Hardness       | <b>312</b> (0.265)   |            | 200.7  |              | 1  | KJK            | 10/25/15 0:    | :07       | 1          | 1   | [CALC]       |
| Hardness       | <b>312</b> (0.265)   |            | 200.7  |              | 1  | KJK            | 10/25/15 0:    | :07       | 1          | 1   | [CALC]       |
| Lead           | ND (0.004)           |            | 200.7  | 0.005        | 1  | KJK            | 10/25/15 0:    | :07       | 50         | 10  | CJ52267      |
| Magnesium      | <b>48.6</b> (0.040)  |            | 200.7  | 0.05         | 1  | KJK            | 10/25/15 0:    | :07       | 50         | 10  | CJ52267      |
| Nickel         | ND (0.002)           |            | 200.7  | 0.004        | 1  | KJK            | 10/25/15 0:    | :07       | 50         | 10  | CJ52267      |
| Zinc           | <b>0.027</b> (0.010) |            | 200.7  | 0.0025       | 1  | KJK            | 10/25/15 0:    | :07       | 50         | 10  | CJ52267      |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1509567 Client Sample ID: Receiving Water ESS Laboratory Sample ID: 1509567-05 Date Sampled: 09/25/15 08:55

Percent Solids: N/A

Sample Matrix: Aqueous

#### All methods used are in accordance with 40 CFR 136.

# **Classical Chemistry**

|                         |                      |     |        | MA - Pern    | nit       |                |                 |              |              |
|-------------------------|----------------------|-----|--------|--------------|-----------|----------------|-----------------|--------------|--------------|
| <u>Analyte</u>          | Results (MRL)        | MDL | Method | <u>Limit</u> | <u>DF</u> | <b>Analyst</b> | <b>Analyzed</b> | <u>Units</u> | <b>Batch</b> |
| Alkalinity as CaCO3     | HT 59 (10)           |     | 2320B  | 2            | 1         | MJV            | 10/24/15 14:19  | mg/L         | CJ52403      |
| Ammonia as N            | <b>H 0.35</b> (0.10) |     | 350.1  | 0.1          | 1         | EEM            | 10/29/15 19:16  | mg/L         | CJ52304      |
| Conductivity            | H 1440 (5)           |     | 120.1  |              | 1         | EEM            | 10/26/15 16:15  | umhos/cm     | CJ52618      |
| Field Dissolved Oxygen  | <b>6.93</b> (N/A)    |     | Field  | 1            | 1         | MNM            | 09/25/15 8:55   | mg/L         | CJ51545      |
| Field pH                | 7.03 (N/A)           |     | Field  |              | 1         | MNM            | 09/25/15 8:55   | S.U.         | CJ51545      |
| Field Temperature       | 22.2 (N/A)           |     | Field  |              | 1         | MNM            | 09/25/15 8:55   | °C           | CJ51545      |
| Salinity                | 1.30 (N/A)           |     | Field  |              | 1         | MNM            | 09/25/15 8:55   | S.U.         | CJ51545      |
| Total Organic Carbon    | <b>8.9</b> (0.5)     |     | §      |              | 1         | SUB            | 10/23/15 16:40  | mg/L         | CJ52706      |
| Total Residual Chlorine | <b>0.17</b> (N/A)    |     | Field  | 0.05         | 1         | MNM            | 09/25/15 8:55   | mg/L         | CJ51545      |
| Total Solids            | <b>H 1720</b> (10)   |     | 2540B  |              | 1         | EEM            | 10/26/15 16:55  | mg/L         | CJ52621      |
| Total Suspended Solids  | <b>H</b> ND (5)      |     | 2540D  |              | 1         | EEM            | 10/23/15 11:20  | mg/L         | CJ52226      |



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay Client Sample ID: Final Effluent

Date Sampled: 09/25/15 08:00

Percent Solids: N/A

ESS Laboratory Work Order: 1509567 ESS Laboratory Sample ID: 1509567-06

Sample Matrix: Aqueous

Units: mg/L

Extraction Method: 3005A/200.7

All methods used are in accordance with 40 CFR 136.

### **Total Metals**

| MA - | Permit |
|------|--------|

|                |                      |            |        | 14111 1 (1111 | 110       |                |                 |     |     |              |
|----------------|----------------------|------------|--------|---------------|-----------|----------------|-----------------|-----|-----|--------------|
| <b>Analyte</b> | Results (MRL)        | <b>MDL</b> | Method | <u>Limit</u>  | <u>DF</u> | <b>Analyst</b> | <b>Analyzed</b> | I/V | F/V | <b>Batch</b> |
| Aluminum       | ND (0.020)           |            | 200.7  | 0.02          | 1         | ICP            | 10/25/15 0:11   | 50  | 10  | CJ52267      |
| Cadmium        | ND (0.0010)          |            | 200.7  | 0.001         | 1         | ICP            | 10/25/15 0:11   | 50  | 10  | CJ52267      |
| Calcium        | <b>46.2</b> (0.080)  |            | 200.7  | 0.05          | 2         | ICP            | 10/26/15 22:49  | 50  | 10  | CJ52267      |
| Chromium       | ND (0.004)           |            | 200.7  | 0.005         | 1         | ICP            | 10/25/15 0:11   | 50  | 10  | CJ52267      |
| Copper         | <b>0.134</b> (0.008) |            | 200.7  | 0.0025        | 2         | ICP            | 10/26/15 22:49  | 50  | 10  | CJ52267      |
| Hardness       | <b>313</b> (0.529)   |            | 200.7  |               | 2         | ICP            | 10/26/15 22:49  | 1   | 1   | [CALC]       |
| Hardness       | <b>313</b> (0.529)   |            | 200.7  |               | 2         | ICP            | 10/26/15 22:49  | 1   | 1   | [CALC]       |
| Lead           | <b>0.019</b> (0.008) |            | 200.7  | 0.005         | 2         | ICP            | 10/26/15 22:49  | 50  | 10  | CJ52267      |
| Magnesium      | <b>48.1</b> (0.080)  |            | 200.7  | 0.05          | 2         | ICP            | 10/26/15 22:49  | 50  | 10  | CJ52267      |
| Nickel         | ND (0.002)           |            | 200.7  | 0.004         | 1         | ICP            | 10/25/15 0:11   | 50  | 10  | CJ52267      |
| Zinc           | <b>0.043</b> (0.020) |            | 200.7  | 0.0025        | 2         | ICP            | 10/26/15 22:49  | 50  | 10  | CJ52267      |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1509567 Client Sample ID: Final Effluent ESS Laboratory Sample ID: 1509567-06 Date Sampled: 09/25/15 08:00

Percent Solids: N/A

Sample Matrix: Aqueous

#### All methods used are in accordance with 40 CFR 136.

# **Classical Chemistry**

|                                |                      |            |        | MA - Pern    | nit       |         |                |              |              |
|--------------------------------|----------------------|------------|--------|--------------|-----------|---------|----------------|--------------|--------------|
| <u>Analyte</u>                 | Results (MRL)        | <b>MDL</b> | Method | <u>Limit</u> | <u>DF</u> | Analyst |                | <u>Units</u> | <b>Batch</b> |
| Alkalinity as CaCO3            | <b>HT 61</b> (10)    |            | 2320B  | 2            | 1         | MJV     | 10/24/15 14:19 | mg/L         | CJ52403      |
| Ammonia as N                   | <b>H 0.29</b> (0.10) |            | 350.1  | 0.1          | 1         | EEM     | 10/29/15 19:17 | mg/L         | CJ52304      |
| Conductivity                   | H 1670 (5)           |            | 120.1  |              | 1         | EEM     | 10/26/15 16:15 | umhos/cm     | CJ52618      |
| Field Dissolved Oxygen         | <b>6.59</b> (N/A)    |            | Field  | 1            | 1         | MNM     | 09/25/15 8:00  | mg/L         | CJ51545      |
| Field pH                       | 7.00 (N/A)           |            | Field  |              | 1         | MNM     | 09/25/15 8:00  | S.U.         | CJ51545      |
| Field Temperature              | <b>31.1</b> (N/A)    |            | Field  |              | 1         | MNM     | 09/25/15 8:00  | °C           | CJ51545      |
| Salinity                       | 1.40 (N/A)           |            | Field  |              | 1         | MNM     | 09/25/15 8:00  | S.U.         | CJ51545      |
| Total Organic Carbon           | 11 (0.5)             |            | §      |              | 1         | SUB     | 10/23/15 16:55 | mg/L         | CJ52706      |
| <b>Total Residual Chlorine</b> | <b>0.19</b> (N/A)    |            | Field  | 0.05         | 1         | MNM     | 09/25/15 8:00  | mg/L         | CJ51545      |
| Total Solids                   | <b>H 1710</b> (10)   |            | 2540B  |              | 1         | EEM     | 10/26/15 16:55 | mg/L         | CJ52621      |
| Total Suspended Solids         | H ND (5)             |            | 2540D  |              | 1         | EEM     | 10/23/15 11:20 | mg/L         | CJ52226      |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1509567
Client Sample ID: Effluent Start ESS Laboratory Sample ID: 1509567-07

Date Sampled: 09/21/15 08:00 Sample Matrix: Aqueous

All methods used are in accordance with 40 CFR 136.

**Classical Chemistry** 

MA - Permit

Analyte Results (MRL) MDL Method Limit DF Analyst Analyzed Units Batch
See Attached (N/A)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay
Client Sample ID: Receiving Water Start

Date Sampled: 09/23/15 13:00

ESS Laboratory Work Order: 1509567 ESS Laboratory Sample ID: 1509567-08

Sample Matrix: Aqueous

All methods used are in accordance with 40 CFR 136.

**Classical Chemistry** 

MA - Permit

Analyte Bioassay Results (MRL) MDL Method Limit DF Analyst Analyzed Units Batch
See Attached (N/A)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay Client Sample ID: Effluent First Renewal

Date Sampled: 09/23/15 08:00

ESS Laboratory Work Order: 1509567 ESS Laboratory Sample ID: 1509567-09

Sample Matrix: Aqueous

All methods used are in accordance with 40 CFR 136.

**Classical Chemistry** 

MA - Permit

**Analyte** Results (MRL) **MDL** Method Limit <u>DF</u> Analyst Analyzed **Units Batch** Bioassay See Attached (N/A)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay

Client Sample ID: Receiving Water First Renewal

Date Sampled: 09/23/15 11:00

ESS Laboratory Work Order: 1509567 ESS Laboratory Sample ID: 1509567-10

Sample Matrix: Aqueous

All methods used are in accordance with 40 CFR 136.

**Classical Chemistry** 

MA - Permit

Analyte Bioassay Results (MRL) MDL Method Limit DF Analyst Analyzed Units Batch
See Attached (N/A)

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.

%REC



RPD

### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1509567

# **Quality Control Data**

Spike

Source

| Analyte                     | Result         | MRL            | Units        | Level            | Result | %REC      | Limits           | RPD | Limit | Qualifier |
|-----------------------------|----------------|----------------|--------------|------------------|--------|-----------|------------------|-----|-------|-----------|
|                             |                |                | Total Met    | als              |        |           |                  |     |       |           |
| Batch CI52327 - 3005A/200.7 |                |                |              |                  |        |           |                  |     |       |           |
| Blank                       |                |                |              |                  |        |           |                  |     |       |           |
| Cadmium                     | ND             | 0.0025         | mg/L         |                  |        |           |                  |     |       |           |
| Chromium                    | ND             | 0.010          | mg/L         |                  |        |           |                  |     |       |           |
| Copper                      | ND             | 0.005          | mg/L         |                  |        |           |                  |     |       |           |
| Lead                        | ND             | 0.010          | mg/L         |                  |        |           |                  |     |       |           |
| Nickel                      | ND             | 0.025          | mg/L         |                  |        |           |                  |     |       |           |
| Zinc                        | ND             | 0.025          | mg/L         |                  |        |           |                  |     |       |           |
| Blank                       |                |                |              |                  |        |           |                  |     |       |           |
| Aluminum                    | ND             | 0.020          | mg/L         |                  |        |           |                  |     |       |           |
| Cadmium                     | ND             | 0.0010         | mg/L         |                  |        |           |                  |     |       |           |
| Calcium                     | ND             | 0.040          | mg/L         |                  |        |           |                  |     |       |           |
| Calcium                     | ND             | 0.040          | mg/L         |                  |        |           |                  |     |       |           |
| Chromium                    | ND             | 0.004          | mg/L         |                  |        |           |                  |     |       |           |
| Copper                      | ND             | 0.002          | mg/L         |                  |        |           |                  |     |       |           |
| Hardness                    | ND             | 0.265          | mg/L         |                  |        |           |                  |     |       |           |
| Lead                        | ND             | 0.004          | mg/L         |                  |        |           |                  |     |       |           |
| Magnesium                   | ND             | 0.040          | mg/L         |                  |        |           |                  |     |       |           |
| Magnesium                   | ND             | 0.040          | mg/L         |                  |        |           |                  |     |       |           |
| Nickel                      | ND             | 0.010          | mg/L         |                  |        |           |                  |     |       |           |
| Zinc                        | ND             | 0.010          | mg/L         |                  |        |           |                  |     |       |           |
| Blank                       |                |                |              |                  |        |           |                  |     |       |           |
| Aluminum                    | ND             | 0.100          | mg/L         |                  |        |           |                  |     |       |           |
| Cadmium                     | ND             | 0.0050         | mg/L         |                  |        |           |                  |     |       |           |
| Chromium                    | ND             | 0.020          | mg/L         |                  |        |           |                  |     |       |           |
| Copper                      | ND             | 0.010          | mg/L         |                  |        |           |                  |     |       |           |
| Lead                        | ND             | 0.020          | mg/L         |                  |        |           |                  |     |       |           |
| Magnesium                   | ND             | 0.200          | mg/L         |                  |        |           |                  |     |       |           |
| Nickel                      | ND             | 0.050          | mg/L         |                  |        |           |                  |     |       |           |
| Zinc                        | ND             | 0.050          | mg/L         |                  |        |           |                  |     |       |           |
| LCS                         |                |                |              |                  |        |           |                  |     |       |           |
| Cadmium                     | 0.120          | 0.0025         | mg/L         | 0.1250           |        | 96        | 85-115           |     |       |           |
| Chromium                    | 0.245          | 0.010          | mg/L         | 0.2500           |        | 98        | 85-115           |     |       |           |
| Copper                      | 0.244          | 0.005          | mg/L         | 0.2500           |        | 98        | 85-115           |     |       |           |
| Lead                        | 0.255          | 0.010          | mg/L         | 0.2500           |        | 102<br>98 | 85-115           |     |       |           |
| Nickel<br>Zinc              | 0.246<br>0.251 | 0.025<br>0.025 | mg/L<br>mg/L | 0.2500<br>0.2500 |        | 98<br>100 | 85-115<br>85-115 |     |       |           |
|                             | 0.231          | 0.025          | iilg/L       | 0.2300           |        | 100       | 03-113           |     |       |           |
| Aluminum                    | 0.407          | 0.020          | w n          | 0.5000           |        | 07        | 05 115           |     |       |           |
| Aluminum                    | 0.487          | 0.020          | mg/L         | 0.5000           |        | 97        | 85-115           |     |       |           |
| Cadmium                     | 0.0479         | 0.0010         | mg/L         | 0.05000          |        | 96        | 85-115           |     |       |           |
| Calcium                     | 0.989          | 0.040          | mg/L         | 1.000            |        | 99        | 85-115           |     |       |           |
| Calcium                     | 0.989          | 0.040          | mg/L         | 1.000            |        | 99        | 85-115           |     |       |           |
|                             | 0.099          | 0.004          | mg/L         | 0.1000           |        | 99        | 85-115           |     |       |           |
| Copper                      | 0.102          | 0.002          | mg/L         | 0.1000           |        | 102       | 85-115           |     |       |           |

185 Frances Avenue, Cranston, RI 02910-2211

6.53

Hardness

Tel: 401-461-7181

mg/L

0.265

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



## CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1509567

# **Quality Control Data**

| Analyte                     | Result | MRL    | Units     | Spike<br>Level | Source<br>Result | %REC  | %REC<br>Limits | RPD  | RPD<br>Limit | Qualifier |
|-----------------------------|--------|--------|-----------|----------------|------------------|-------|----------------|------|--------------|-----------|
| , mary co                   | Nesuit | FINE   | Total Met |                | Nesuit           | JUNEC | LIIIIG         | Ni D | Little       | Qualifici |
|                             |        |        | Total Met | ais            |                  |       |                |      |              |           |
| Batch CI52327 - 3005A/200.7 |        |        |           |                |                  |       |                |      |              |           |
| Lead                        | 0.101  | 0.004  | mg/L      | 0.1000         |                  | 101   | 85-115         |      |              |           |
| Magnesium                   | 0.985  | 0.040  | mg/L      | 1.000          |                  | 99    | 85-115         |      |              |           |
| Magnesium                   | 0.985  | 0.040  | mg/L      | 1.000          |                  | 99    | 85-115         |      |              |           |
| Nickel                      | 0.099  | 0.010  | mg/L      | 0.1000         |                  | 99    | 85-115         |      |              |           |
| Zinc                        | 0.101  | 0.010  | mg/L      | 0.1000         |                  | 101   | 85-115         |      |              |           |
| LCS                         |        |        |           |                |                  |       |                |      |              |           |
| Aluminum                    | 2.49   | 0.100  | mg/L      | 2.500          |                  | 100   | 85-115         |      |              |           |
| Cadmium                     | 0.236  | 0.0050 | mg/L      | 0.2500         |                  | 94    | 85-115         |      |              |           |
| Chromium                    | 0.504  | 0.020  | mg/L      | 0.5000         |                  | 101   | 85-115         |      |              |           |
| Copper                      | 0.495  | 0.010  | mg/L      | 0.5000         |                  | 99    | 85-115         |      |              |           |
| Lead                        | 0.507  | 0.020  | mg/L      | 0.5000         |                  | 101   | 85-115         |      |              |           |
| Magnesium                   | 4.90   | 0.200  | mg/L      | 5.000          |                  | 98    | 85-115         |      |              |           |
| Nickel                      | 0.500  | 0.050  | mg/L      | 0.5000         |                  | 100   | 85-115         |      |              |           |
| Zinc                        | 0.497  | 0.050  | mg/L      | 0.5000         |                  | 99    | 85-115         |      |              |           |
| LCS Dup                     |        |        |           |                |                  |       |                |      |              |           |
| Cadmium                     | 0.119  | 0.0025 | mg/L      | 0.1250         |                  | 96    | 85-115         | 0.2  | 20           |           |
| Chromium                    | 0.252  | 0.010  | mg/L      | 0.2500         |                  | 101   | 85-115         | 3    | 20           |           |
| Copper                      | 0.248  | 0.005  | mg/L      | 0.2500         |                  | 99    | 85-115         | 2    | 20           |           |
| Lead                        | 0.253  | 0.010  | mg/L      | 0.2500         |                  | 101   | 85-115         | 0.9  | 20           |           |
| Nickel                      | 0.250  | 0.025  | mg/L      | 0.2500         |                  | 100   | 85-115         | 2    | 20           |           |
| Zinc                        | 0.255  | 0.025  | mg/L      | 0.2500         |                  | 102   | 85-115         | 2    | 20           |           |
| LCS Dup                     |        |        |           |                |                  |       |                |      |              |           |
| Aluminum                    | 0.464  | 0.020  | mg/L      | 0.5000         |                  | 93    | 85-115         | 5    | 20           |           |
| Cadmium                     | 0.0455 | 0.0010 | mg/L      | 0.05000        |                  | 91    | 85-115         | 5    | 20           |           |
| Calcium                     | 0.931  | 0.040  | mg/L      | 1.000          |                  | 93    | 85-115         | 6    | 20           |           |
| Calcium                     | 0.931  | 0.040  | mg/L      | 1.000          |                  | 93    | 85-115         | 6    | 20           |           |
| Chromium                    | 0.094  | 0.004  | mg/L      | 0.1000         |                  | 94    | 85-115         | 6    | 20           |           |
| Copper                      | 0.096  | 0.002  | mg/L      | 0.1000         |                  | 96    | 85-115         | 5    | 20           |           |
| Hardness                    | 6.20   | 0.265  | mg/L      |                |                  |       |                |      |              |           |
| Lead                        | 0.095  | 0.004  | mg/L      | 0.1000         |                  | 95    | 85-115         | 6    | 20           |           |
| Magnesium                   | 0.942  | 0.040  | mg/L      | 1.000          |                  | 94    | 85-115         | 5    | 20           |           |
| Magnesium                   | 0.942  | 0.040  | mg/L      | 1.000          |                  | 94    | 85-115         | 5    | 20           |           |
| Nickel                      | 0.093  | 0.010  | mg/L      | 0.1000         |                  | 93    | 85-115         | 6    | 20           |           |
| Zinc                        | 0.097  | 0.010  | mg/L      | 0.1000         |                  | 97    | 85-115         | 4    | 20           |           |
| LCS Dup                     |        |        |           |                |                  |       |                |      |              |           |
| Aluminum                    | 2.48   | 0.100  | mg/L      | 2.500          |                  | 99    | 85-115         | 0.5  | 20           |           |
| Cadmium                     | 0.239  | 0.0050 | mg/L      | 0.2500         |                  | 96    | 85-115         | 1    | 20           |           |
| Chromium                    | 0.503  | 0.020  | mg/L      | 0.5000         |                  | 101   | 85-115         | 0.3  | 20           |           |
| Copper                      | 0.494  | 0.010  | mg/L      | 0.5000         |                  | 99    | 85-115         | 0.2  | 20           |           |
| Lead                        | 0.516  | 0.020  | mg/L      | 0.5000         |                  | 103   | 85-115         | 2    | 20           |           |
| Magnesium                   | 4.89   | 0.200  | mg/L      | 5.000          |                  | 98    | 85-115         | 0.2  | 20           |           |
| Nickel                      | 0.502  | 0.050  | mg/L      | 0.5000         |                  | 100   | 85-115         | 0.3  | 20           |           |
| Zinc                        | 0.501  | 0.050  | mg/L      | 0.5000         |                  | 100   | 85-115         | 0.8  | 20           |           |
| Batch CJ52267 - 3005A/200.7 |        |        |           |                |                  |       |                |      |              |           |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1509567

# **Quality Control Data**

|         |        |     |       | Spike | Source |      | %REC   |     | RPD   |           |
|---------|--------|-----|-------|-------|--------|------|--------|-----|-------|-----------|
| Analyte | Result | MRL | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifier |

| Total | Metals |
|-------|--------|

| Batch CJ52267 - 3005A/200.7 |        |        |      |         |     |        |   |    |  |
|-----------------------------|--------|--------|------|---------|-----|--------|---|----|--|
| Blank                       |        |        |      |         |     |        |   |    |  |
| Aluminum                    | ND     | 0.020  | mg/L |         |     |        |   |    |  |
| Cadmium                     | ND     | 0.0010 | mg/L |         |     |        |   |    |  |
| Calcium                     | ND     | 0.040  | mg/L |         |     |        |   |    |  |
| Calcium                     | ND     | 0.040  | mg/L |         |     |        |   |    |  |
| Chromium                    | ND     | 0.004  | mg/L |         |     |        |   |    |  |
| Copper                      | ND     | 0.002  | mg/L |         |     |        |   |    |  |
| Hardness                    | ND     | 0.265  | mg/L |         |     |        |   |    |  |
| Lead                        | ND     | 0.004  | mg/L |         |     |        |   |    |  |
| Magnesium                   | ND     | 0.040  | mg/L |         |     |        |   |    |  |
| Magnesium                   | ND     | 0.040  | mg/L |         |     |        |   |    |  |
| Nickel                      | ND     | 0.010  | mg/L |         |     |        |   |    |  |
| Zinc                        | ND     | 0.010  | mg/L |         |     |        |   |    |  |
| Blank                       |        |        |      |         |     |        |   |    |  |
| Cadmium                     | ND     | 0.0050 | mg/L |         |     |        |   |    |  |
| Chromium                    | ND     | 0.010  | mg/L |         |     |        |   |    |  |
| Copper                      | ND     | 0.010  | mg/L |         |     |        |   |    |  |
| Lead                        | ND     | 0.010  | mg/L |         |     |        |   |    |  |
| Nickel                      | ND     | 0.025  | mg/L |         |     |        |   |    |  |
| Zinc                        | ND     | 0.025  | mg/L |         |     |        |   |    |  |
| LCS                         |        |        |      |         |     |        |   |    |  |
| Aluminum                    | 0.491  | 0.020  | mg/L | 0.5000  | 98  | 85-115 |   |    |  |
| Cadmium                     | 0.0476 | 0.0010 | mg/L | 0.05000 | 95  | 85-115 |   |    |  |
| Calcium                     | 1.04   | 0.040  | mg/L | 1.000   | 104 | 85-115 |   |    |  |
| Calcium                     | 1.04   | 0.040  | mg/L | 1.000   | 104 | 85-115 |   |    |  |
| Chromium                    | 0.096  | 0.004  | mg/L | 0.1000  | 96  | 85-115 |   |    |  |
| Copper                      | 0.102  | 0.002  | mg/L | 0.1000  | 102 | 85-115 |   |    |  |
| Hardness                    | 6.99   | 0.265  | mg/L |         |     |        |   |    |  |
| Lead                        | 0.095  | 0.004  | mg/L | 0.1000  | 95  | 85-115 |   |    |  |
| Magnesium                   | 1.07   | 0.040  | mg/L | 1.000   | 107 | 85-115 |   |    |  |
| Magnesium                   | 1.07   | 0.040  | mg/L | 1.000   | 107 | 85-115 |   |    |  |
| Nickel                      | 0.098  | 0.010  | mg/L | 0.1000  | 98  | 85-115 |   |    |  |
| Zinc                        | 0.099  | 0.010  | mg/L | 0.1000  | 99  | 85-115 |   |    |  |
| LCS                         |        |        |      |         |     |        |   |    |  |
| Cadmium                     | 0.117  | 0.0050 | mg/L | 0.1250  | 93  | 85-115 |   |    |  |
| Chromium                    | 0.244  | 0.010  | mg/L | 0.2500  | 97  | 85-115 |   |    |  |
| Copper                      | 0.246  | 0.010  | mg/L | 0.2500  | 98  | 85-115 |   |    |  |
| Lead                        | 0.242  | 0.010  | mg/L | 0.2500  | 97  | 85-115 |   |    |  |
| Nickel                      | 0.244  | 0.025  | mg/L | 0.2500  | 97  | 85-115 |   |    |  |
| Zinc                        | 0.238  | 0.025  | mg/L | 0.2500  | 95  | 85-115 |   |    |  |
| LCS Dup                     |        |        |      |         |     |        |   |    |  |
| Aluminum                    | 0.478  | 0.020  | mg/L | 0.5000  | 96  | 85-115 | 3 | 20 |  |
| Cadmium                     | 0.0459 | 0.0010 | mg/L | 0.05000 | 92  | 85-115 | 4 | 20 |  |
| Calcium                     | 0.999  | 0.040  | mg/L | 1.000   | 100 | 85-115 | 4 | 20 |  |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1509567

# **Quality Control Data**

|                                                                                                                                                                                        |                 |        |                      | c              |                  |      | 0/ 5=0         |     | 0.00         |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------|----------------------|----------------|------------------|------|----------------|-----|--------------|-----------|
| Analyte                                                                                                                                                                                | Result          | MRL    | Units                | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Qualifier |
|                                                                                                                                                                                        |                 |        | Total Meta           | nls            |                  |      |                |     |              |           |
| Batch CJ52267 - 3005A/200.7                                                                                                                                                            |                 |        |                      |                |                  |      |                |     |              |           |
| Calcium                                                                                                                                                                                | 0.999           | 0.040  | mg/L                 | 1.000          |                  | 100  | 85-115         | 4   | 20           |           |
| Chromium                                                                                                                                                                               | 0.093           | 0.004  | mg/L                 | 0.1000         |                  | 93   | 85-115         | 3   | 20           |           |
| Copper                                                                                                                                                                                 | 0.099           | 0.002  | mg/L                 | 0.1000         |                  | 99   | 85-115         | 3   | 20           |           |
| Hardness                                                                                                                                                                               | 6.73            | 0.265  | mg/L                 |                |                  |      |                |     |              |           |
| Lead                                                                                                                                                                                   | 0.090           | 0.004  | mg/L                 | 0.1000         |                  | 90   | 85-115         | 5   | 20           |           |
| Magnesium                                                                                                                                                                              | 1.03            | 0.040  | mg/L                 | 1.000          |                  | 103  | 85-115         | 4   | 20           |           |
| Magnesium                                                                                                                                                                              | 1.03            | 0.040  | mg/L                 | 1.000          |                  | 103  | 85-115         | 4   | 20           |           |
| Nickel                                                                                                                                                                                 | 0.095           | 0.010  | mg/L                 | 0.1000         |                  | 95   | 85-115         | 3   | 20           |           |
| Zinc                                                                                                                                                                                   | 0.097           | 0.010  | mg/L                 | 0.1000         |                  | 97   | 85-115         | 2   | 20           |           |
| LCS Dup                                                                                                                                                                                |                 |        |                      |                |                  |      |                |     |              |           |
| Cadmium                                                                                                                                                                                | 0.122           | 0.0050 | mg/L                 | 0.1250         |                  | 97   | 85-115         | 4   | 20           |           |
| Chromium                                                                                                                                                                               | 0.255           | 0.010  | mg/L                 | 0.2500         |                  | 102  | 85-115         | 5   | 20           |           |
| Copper                                                                                                                                                                                 | 0.258           | 0.010  | mg/L                 | 0.2500         |                  | 103  | 85-115         | 5   | 20           |           |
| Lead                                                                                                                                                                                   | 0.254           | 0.010  | mg/L                 | 0.2500         |                  | 102  | 85-115         | 5   | 20           |           |
| Nickel                                                                                                                                                                                 | 0.255           | 0.025  | mg/L                 | 0.2500         |                  | 102  | 85-115         | 5   | 20           |           |
| Zinc                                                                                                                                                                                   | 0.250           | 0.025  | mg/L                 | 0.2500         |                  | 100  | 85-115         | 5   | 20           |           |
|                                                                                                                                                                                        |                 | Cl     | lassical Cher        | nistry         |                  |      |                |     |              |           |
| Batch CI52403 - NH4 Prep                                                                                                                                                               |                 |        |                      |                |                  |      |                |     |              |           |
| Blank                                                                                                                                                                                  |                 |        |                      |                |                  |      |                |     |              |           |
| Ammonia as N                                                                                                                                                                           | ND              | 0.10   | mg/L                 |                |                  |      |                |     |              |           |
| LCS                                                                                                                                                                                    |                 |        |                      |                |                  |      |                |     |              |           |
| Ammonia as N                                                                                                                                                                           | 0.12            | 0.10   | mg/L                 | 0.09994        |                  | 119  | 80-120         |     |              |           |
| LCS                                                                                                                                                                                    |                 |        |                      |                |                  |      |                |     |              |           |
| Ammonia as N                                                                                                                                                                           | 1.17            | 0.10   | mg/L                 | 0.9994         |                  | 117  | 80-120         |     |              |           |
| Batch CI52518 - General Preparation                                                                                                                                                    |                 |        |                      |                |                  |      |                |     |              |           |
|                                                                                                                                                                                        |                 |        |                      |                |                  |      |                |     |              |           |
| Blank                                                                                                                                                                                  |                 |        |                      |                |                  |      |                |     |              |           |
|                                                                                                                                                                                        | ND              | 10     | mg/L                 |                |                  |      |                |     |              |           |
| Total Solids                                                                                                                                                                           | ND              | 10     | mg/L                 |                |                  |      |                |     |              |           |
| Total Solids<br>LCS                                                                                                                                                                    | ND<br>330       | 10     | mg/L                 | 324.0          |                  | 102  | 80-120         |     |              |           |
| Total Solids  LCS  Total Solids                                                                                                                                                        |                 | 10     |                      | 324.0          |                  | 102  | 80-120         |     |              |           |
| Total Solids  LCS  Total Solids  Batch CI52519 - General Preparation                                                                                                                   |                 | 10     |                      | 324.0          |                  | 102  | 80-120         |     |              |           |
| Total Solids  LCS Total Solids  Batch CI52519 - General Preparation  Blank                                                                                                             |                 | 5      |                      | 324.0          |                  | 102  | 80-120         |     |              |           |
| Total Solids  LCS Total Solids  Batch CI52519 - General Preparation  Blank  Total Suspended Solids                                                                                     | 330             |        | mg/L                 | 324.0          |                  | 102  | 80-120         |     |              |           |
| Total Solids  LCS Total Solids  Batch CI52519 - General Preparation  Blank  Total Suspended Solids  LCS                                                                                | 330             |        | mg/L                 | 324.0          |                  | 102  | 80-120         |     |              |           |
| Total Solids  LCS Total Solids  Batch CI52519 - General Preparation  Blank Total Suspended Solids  LCS Total Suspended Solids                                                          | 330<br>ND       |        | mg/L<br>mg/L         |                |                  |      |                |     |              |           |
| Total Solids  LCS  Total Solids  Batch CI52519 - General Preparation  Blank  Total Suspended Solids  LCS  Total Suspended Solids  Batch CI52524 - General Preparation                  | 330<br>ND       |        | mg/L<br>mg/L         |                |                  |      |                |     |              |           |
| Blank Total Solids LCS Total Solids Batch CI52519 - General Preparation Blank Total Suspended Solids LCS Total Suspended Solids Batch CI52524 - General Preparation Blank Conductivity | 330<br>ND       |        | mg/L<br>mg/L         |                |                  |      |                |     |              |           |
| Total Solids  LCS Total Solids  Batch CI52519 - General Preparation  Blank Total Suspended Solids  LCS Total Suspended Solids  Batch CI52524 - General Preparation  Blank Conductivity | 330<br>ND<br>42 | 5      | mg/L<br>mg/L<br>mg/L |                |                  |      |                |     |              |           |
| Total Solids  LCS  Total Solids  Batch CI52519 - General Preparation  Blank  Total Suspended Solids  LCS  Total Suspended Solids  Batch CI52524 - General Preparation  Blank           | 330<br>ND<br>42 | 5      | mg/L<br>mg/L<br>mg/L |                |                  |      |                |     |              |           |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1509567

# **Quality Control Data**

|                                     |                 |      |                | Spike   | Source |      | %REC   |     | RPD   |           |
|-------------------------------------|-----------------|------|----------------|---------|--------|------|--------|-----|-------|-----------|
| Analyte                             | Result          | MRL  | Units          | Level   | Result | %REC | Limits | RPD | Limit | Qualifier |
|                                     |                 | C    | Classical Cher | nistry  |        |      |        |     |       |           |
| Batch CI52539 - General Preparation |                 |      |                |         |        |      |        |     |       |           |
| Blank                               |                 |      |                |         |        |      |        |     |       |           |
| Alkalinity as CaCO3                 | ND              | 10   | mg/L           |         |        |      |        |     |       |           |
| LCS                                 | ·· <del>·</del> |      | 9/ =           |         |        |      |        |     |       |           |
| Alkalinity as CaCO3                 | 73              |      | mg/L           | 78.30   |        | 93   | 85-115 |     |       |           |
| Batch CJ52226 - General Preparation |                 |      |                |         |        |      |        |     |       |           |
| Blank                               |                 |      |                |         |        |      |        |     |       |           |
| Total Suspended Solids              | ND              | 5    | mg/L           |         |        |      |        |     |       |           |
| LCS                                 |                 |      | -              |         |        |      |        |     |       |           |
| Total Suspended Solids              | 40              |      | mg/L           | 42.10   |        | 95   | 80-120 |     |       |           |
| Batch CJ52304 - NH4 Prep            |                 |      |                |         |        |      |        |     |       |           |
| Blank                               |                 |      |                |         |        |      |        |     |       |           |
| Ammonia as N                        | ND              | 0.10 | mg/L           |         |        |      |        |     |       |           |
| LCS                                 |                 |      |                |         |        |      |        |     |       |           |
| Ammonia as N                        | 0.09            | 0.10 | mg/L           | 0.09994 |        | 92   | 80-120 |     |       |           |
| LCS                                 |                 |      |                |         |        |      |        |     |       |           |
| Ammonia as N                        | 0.96            | 0.10 | mg/L           | 0.9994  |        | 96   | 80-120 |     |       |           |
| Batch CJ52403 - General Preparation |                 |      |                |         |        |      |        |     |       |           |
| Blank                               |                 |      |                |         |        |      |        |     |       |           |
| Alkalinity as CaCO3                 | ND              | 10   | mg/L           |         |        |      |        |     |       |           |
| LCS                                 |                 |      |                |         |        |      |        |     |       |           |
| Alkalinity as CaCO3                 | 84              |      | mg/L           | 78.30   |        | 107  | 85-115 |     |       |           |
| Batch CJ52618 - General Preparation |                 |      |                |         |        |      |        |     |       |           |
| Blank                               |                 |      |                |         |        |      |        |     |       |           |
| Conductivity                        | ND              | 5    | umhos/cm       |         |        |      |        |     |       |           |
| LCS                                 |                 |      |                |         |        |      |        |     |       |           |
| Conductivity                        | 1390            |      | umhos/cm       | 1411    |        | 98   | 90-110 |     |       |           |
| Batch CJ52621 - General Preparation |                 |      |                |         |        |      |        |     |       |           |
| Blank                               |                 |      |                |         |        |      |        |     |       |           |
| Total Solids                        | ND              | 10   | mg/L           |         |        |      |        |     |       |           |
| LCS                                 |                 |      |                |         |        |      |        |     |       |           |
| Total Solids                        | 320             |      | mg/L           | 324.0   |        | 99   | 80-120 |     |       |           |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1509567

#### **Notes and Definitions**

| Z-08 | See Attached                                                                                               |
|------|------------------------------------------------------------------------------------------------------------|
| U    | Analyte included in the analysis, but not detected                                                         |
| HT   | The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual |
|      | Chlorine is fifteen minutes.                                                                               |
| Н    | Estimated value. Sample hold times were exceeded (H).                                                      |
| D    | Diluted.                                                                                                   |
| ND   | Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes            |
| dry  | Sample results reported on a dry weight basis                                                              |
| RPD  | Relative Percent Difference                                                                                |
| MDL  | Method Detection Limit                                                                                     |
| MRL  | Method Reporting Limit                                                                                     |
| LOD  | Limit of Detection                                                                                         |
| LOQ  | Limit of Quantitation                                                                                      |
| DL   | Detection Limit                                                                                            |
| I/V  | Initial Volume                                                                                             |
| F/V  | Final Volume                                                                                               |
| §    | Subcontracted analysis; see attached report                                                                |
| 1    | Range result excludes concentrations of surrogates and/or internal standards eluting in that range.        |
| 2    | Range result excludes concentrations of target analytes eluting in that range.                             |
| 3    | Range result excludes the concentration of the C9-C10 aromatic range.                                      |
| Avg  | Results reported as a mathematical average.                                                                |

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Veolia

Client Project ID: NPDES Bioassay ESS Laboratory Work Order: 1509567

## ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 <a href="http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories/pdf/OutofStateCommercialLaboratories.pdf">http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories.pdf</a>

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: R100002 <a href="http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls">http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls</a>

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 <a href="http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715">http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715</a>

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752

http://www.depweb.state.pa.us/portal/server.pt/community/labs/13780/laboratory\_accreditation\_program/590095

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



61 Louisa Viens Drive Dayville, CT 06241 Fax: 860-774-2689 Phone: 860-774-6814 Toll-Free: 800-334-0103

# ANALYTICAL DATA REPORT

prepared for:

ESS Laboratory 185 Frances Avenue Cranston, RI 02910-2211 Liz Ouk

Report Number: E509V80 Revision 1 Project: MA-Groundwater

> Received Date: 09/28/2015 Report Date: 09/30/2015 Revision Date: 10/01/2015

> > David Dickinson Technical Director





61 Louisa Viens Drive Dayville, CT 06241 Fax: 860-774-2689 Phone: 860-774-6814 Toll-Free: 800-334-0103

Report No: E509V80

Client: ESS Laboratory
Project: MA-Groundwater

## CASE NARRATIVE / METHOD CONFORMANCE SUMMARY

The results presented in this report relate only to the samples received.

This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included, along with a copy of the chain of custody and any subcontracted analyses reports, if applicable, for the sample(s) in this report. Subcontractor results are identified by 'SUB' next to the analysis.

Microbac Laboratories, Inc. received two samples from ESS Laboratory on 09/28/2015. The samples were analyzed for the following list of analyses in accordance with MA DEP regulations unless otherwise indicated:

Total Organic Carbon (TOC) by SM5310C SM 5310C

Non-Conformances: Work Order:

None

Sample:

None

**Analysis:** 

None

# Microbac Laboratories, Inc. Analytical Data Report

Report No: E509V80

Date Received: 09/28/2015 15:30

Customer: ESS Laboratory Project: MA-Groundwater

| <u>Parameter</u>                                  | Result          | DL   | <u>Units</u> | Completed        | By Dilution |
|---------------------------------------------------|-----------------|------|--------------|------------------|-------------|
| (1) 1509567-1<br>Date Collected: 09/21/2015 13:00 | Matrix: Aqueous |      |              |                  |             |
| Total Organic Carbon (TOC) by SM5310C             | 9.3             | 0.50 | mg/L         | 09/29/2015 18:55 | $M_B$       |
| (2) 1509567-2<br>Date Collected: 09/21/2015 08:00 | Matrix: Aqueous |      |              |                  |             |
| Total Organic Carbon (TOC) by SM5310C             | 12              | 0.50 | mg/L         | 09/29/2015 19:11 | $M_B$       |
| (3) Method Blank<br>Date Collected: 09/28/2015    | Matrix: Aqueous |      |              |                  |             |
| Total Organic Carbon (TOC) by SM5310C             | ND              | 0.50 | mg/L         | 09/29/2015 18:39 | $M_B$       |

# Wet Chemistry Duplicate/Matrix Spike Summary

# E509V80

| Sample           | Sample | Sample<br>Duplicate | RPD | Spike<br>Amount | LFM<br>Result | %<br>Recovery | Recovery<br>Limits | Result | %<br>Recovery | Recovery<br>Limits | Analysis Date |
|------------------|--------|---------------------|-----|-----------------|---------------|---------------|--------------------|--------|---------------|--------------------|---------------|
|                  |        |                     |     |                 |               |               |                    |        |               |                    |               |
| TOC              |        |                     |     |                 |               |               |                    |        |               |                    |               |
|                  |        |                     |     |                 |               |               |                    |        |               |                    |               |
| ICV              |        |                     |     | 12              |               |               |                    | 12.6   | 105           | 90-110             |               |
| ICV<br>E509V17-1 | 1.39   |                     |     | 12<br>5.0       | 6.46          | 101           | 80-120             | 12.6   | 105           | 90-110             | 9/29/2015     |

When the sample or duplicate concentration is < 5X the DL, the control limit becomes +/- the DL.

When the sample concentration is > 4 X the spiked concentration there is no QC action limit.

E539v80

| 1956251          | ring Limite                            |                                            | Electonic Deliverables Excel* Access PDF                                              |                | -/رار          | 37/b.         | M                     | 700                    |             | ×         |   |  |   |   | Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter | Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9 |              | *Please Provide ESS Deliverables | Received by: (Signature, Date & Time)     |                 | Date & Time)                              | Murae 9/28/15 1530        |                                                              |
|------------------|----------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------|----------------|----------------|---------------|-----------------------|------------------------|-------------|-----------|---|--|---|---|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------|----------------------------------|-------------------------------------------|-----------------|-------------------------------------------|---------------------------|--------------------------------------------------------------|
| ESS Lab#         | Reno                                   | odav                                       | Electonic                                                                             |                | sisyl          | snA           |                       | Vol of<br>Container    | 74034       | 46mC      |   |  | - |   | Water DW-Drinkin                                                                                                        | лаон, 6-Меон, 7                                                                             |              | Provide ES                       | Rec                                       |                 |                                           |                           | 70 1                                                         |
| DY               | ۲/                                     |                                            |                                                                                       | 12             |                | 199           |                       | Type of<br>Container   | >           | >         |   |  |   |   | r SW-Surface                                                                                                            | 4-HNO3, 5-N                                                                                 |              | *Please                          | Date & Time)                              |                 | Date & Time)                              | alren                     | tody                                                         |
| USTC             | 61 b M 1                               | ther                                       |                                                                                       | 1.95605,       |                | Po#<br>B02199 |                       | # of<br>Containers     | 4           | N         |   |  |   |   | 3W-Groundwate                                                                                                           | Cl, 3-H2SO4,                                                                                |              |                                  | Relinquished by: (Signature, Date & Time) |                 | Relinquished by: (Signature, Date & Time) | Mally famol Alielle 15:30 | thain of Cus                                                 |
| OF C             | A-90M                                  | NY ME O                                    | rcle)<br>Other                                                                        | 15             |                |               |                       | Pres<br>Code           | 3           | 3         |   |  |   |   | Wastewater G                                                                                                            | e: 1-NP, 2-H                                                                                |              |                                  | Relinquished                              |                 | Relinquished                              | Mala                      | nanges to C                                                  |
| CHAIN OF CUSTODY | ird (Other)                            | State: MA RI CT NH NJ NY ME Other          | is this project for any of the following:(please circle) MA-MCP Navy USACE CT DEP Otl | Project Name   |                | Zip           | email:                | Sample ID              | 1-19        | 57-2      |   |  |   |   | Solid D-Sludge WW.                                                                                                      | Preservation Code                                                                           | Sampled by:  | Comments:                        |                                           | 9/2/115 131     |                                           |                           | Please fax to the laboratory all changes to Chain of Custody |
| bac              | ✓ Standard                             | tate: MA RI                                | for any of the follow<br>Navy USACE                                                   |                |                |               | ielsch.com            | Samı                   | 1-1955051   | 1509567-2 |   |  |   |   | Matrix: S-Soil SD-8                                                                                                     | Only                                                                                        |              | an                               |                                           | 1               |                                           |                           | lease fax to the                                             |
| / Microb         | Turn Time                              | Regulatory S                               | ls this project f<br>MA-MCP                                                           | Project #      | Proj. Location |               | smorrell@thielsch.com | Matrix                 | 54          | MM        |   |  |   |   | ·                                                                                                                       | Internal Use Only                                                                           | [ ] Pickup   | [ ] Technician                   | ture, Date & Time)                        | 4 fain          | (J/e, Date & Time)                        |                           |                                                              |
| Premier/ Micro   |                                        | 0-2211                                     |                                                                                       |                |                | City , State  | email:                | Grab -G<br>Composite-C | 9           | C         |   |  |   | - | VOA                                                                                                                     | °N.                                                                                         |              |                                  | Received by: (Signature, Date & Time)     | Mally far       | Received by: (Signa                       |                           | O booth Manage                                               |
|                  | neering, Inc.                          | 185 Frances Avenue, Cranston RI 02910-2211 | Tel. (401)461-7181 Fax (401)461-4486<br>www.esslaboratory.com                         | ESS Laboratory | Shawn Morrell  |               |                       | Collection Time        | 1300        | 0080      |   |  |   |   | Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA                                                           | Yes                                                                                         | No NA:       | -                                |                                           | ( 1031          |                                           |                           | s sampels were                                               |
| ESS Laboratory   | Division of Thielsch Engineering, Inc. | Avenue, Crai                               | 1-7181 Fax                                                                            |                |                |               | Ext 3083              | Date                   | اح (١٦   در | 9/20111   | - |  |   |   | ily G-Glass AG-Amb                                                                                                      | int                                                                                         | Yes          | erature:                         | Relinquished by: (Signature, Date & Time) | 1501 Silselle - | Relinquished by: (Signature, Date & Time) |                           | * By circling MA-MCP, client acknowledges sampels were       |
| ESS La           | Division of T <sub>1</sub>             | 185 Frances                                | Tel. (401)461-7181 Fax www.esslaboratory.com                                          | Со. Nате       | Contact Person | Address       | Tel.                  | ESS Lab ID             |             |           |   |  |   |   | ontainer Type: P-Po                                                                                                     | Cooler Present                                                                              | Seals Intact | Cooler Temperature:              | Relinquished by: (Sig                     | Meller          | Relinquished by: (Sig                     |                           | By circling MA-MCF                                           |



61 Louisa Viens Drive Dayville, CT 06241 Fax: 860-774-2689 Phone: 860-774-6814 Toll-Free: 800-334-0103

# ANALYTICAL DATA REPORT

prepared for:

ESS Laboratory 185 Frances Avenue Cranston, RI 02910-2211 Shawn Morrell

Report Number: E510O33 Project: MA-Groundwater

> Received Date: 10/23/2015 Report Date: 10/26/2015

> > David Dickinson Technical Director





61 Louisa Viens Drive Dayville, CT 06241 Fax: 860-774-2689 Phone: 860-774-6814 Toll-Free: 800-334-0103

Report No: E510O33

Client: ESS Laboratory
Project: MA-Groundwater

# CASE NARRATIVE / METHOD CONFORMANCE SUMMARY

The results presented in this report relate only to the samples received.

This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included, along with a copy of the chain of custody and any subcontracted analyses reports, if applicable, for the sample(s) in this report. Subcontractor results are identified by 'SUB' next to the analysis.

Microbac Laboratories, Inc. received four samples from ESS Laboratory on 10/23/2015. The samples were analyzed for the following list of analyses in accordance with MA DEP regulations unless otherwise indicated:

Total Organic Carbon (TOC) by SM5310C SM 5310C

Non-Conformances: Work Order:

None

Sample:

None

**Analysis:** 

None

# Microbac Laboratories, Inc. Analytical Data Report

Report No: E510O33

Date Received: 10/23/2015 13:45

Customer: ESS Laboratory Project: MA-Groundwater

| Parameter                                                                                | Result          | DL   | Units | Completed        | By Dilution |
|------------------------------------------------------------------------------------------|-----------------|------|-------|------------------|-------------|
| (1) 15109567-03<br>Date Collected: 09/23/2015 11:00                                      | Matrix: Aqueous |      |       |                  |             |
| Total Organic Carbon (TOC) by SM5310C                                                    | 9.9             | 0.50 | mg/L  | 10/23/2015 16:09 | $M_B$       |
| (2) 15109567-04                                                                          |                 |      |       |                  |             |
| Date Collected: 09/23/2015 08:00                                                         | Matrix: Aqueous |      |       |                  |             |
| Total Organic Carbon (TOC) by SM5310C                                                    | 11              | 0.50 | mg/L  | 10/23/2015 16:25 | M_B         |
| (3) 15109567-05<br>Date Collected: 09/25/2015 08:55                                      | Matrix: Aqueous |      |       |                  |             |
| Total Organic Carbon (TOC) by SM5310C                                                    | 8.9             | 0.50 | mg/L  | 10/23/2015 16:40 | $M_B$       |
| (4) 15109567-06  Date Collected: 09/25/2015 08:00  Total Organic Carbon (TOC) by SM5310C | Matrix: Aqueous | 0.50 | mg/L  | 10/23/2015 16:55 | M_B         |
| (5) Method Blank<br>Date Collected: 10/23/2015                                           | Matrix, Aquaque |      |       |                  |             |
|                                                                                          | Matrix: Aqueous | 0.50 | /=    | 10/02/0015 14 50 | MD          |
| Total Organic Carbon (TOC) by SM5310C                                                    | ND              | 0.50 | mg/L  | 10/23/2015 14:59 | $M_B$       |

# Wet Chemistry Duplicate/Matrix Spike Summary

# E510033

|           |        |                     |     |                 |               |               |                    |             | LCS           |                    |               |
|-----------|--------|---------------------|-----|-----------------|---------------|---------------|--------------------|-------------|---------------|--------------------|---------------|
| Sample    | Sample | Sample<br>Duplicate | RPD | Spike<br>Amount | LFM<br>Result | %<br>Recovery | Recovery<br>Limits | I KASIIIT I | %<br>Recovery | Recovery<br>Limits | Analysis Date |
|           |        |                     |     |                 |               |               |                    |             |               |                    |               |
| TOC       |        |                     |     |                 |               |               |                    |             |               |                    |               |
| ICV       |        |                     |     | 12              |               |               |                    | 12.3        | 102           | 90-110             |               |
| E510J07-2 | 3.55   |                     |     | 5.0             | 8.27          | 94.4          | 80-120             |             |               |                    | 10/23/2015    |
| E510J07-1 | 6.09   | 6.03                | 1.0 |                 |               |               | 25                 |             |               |                    |               |

When the sample or duplicate concentration is < 5X the DL, the control limit becomes +/- the DL.

When the sample concentration is > 4 X the spiked concentration there is no QC action limit.

F 510033

| ESS Le               | ESS Laboratory                            | >                                                             | Premier                             | Premier/ Microbac                     | )ac                   | CHAIN OF CUSTODY                                                                                                        | OF C         | USTO                                      |                   | 1509567             |                                       | MAC              | ~                            |    |
|----------------------|-------------------------------------------|---------------------------------------------------------------|-------------------------------------|---------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------|-------------------|---------------------|---------------------------------------|------------------|------------------------------|----|
| Division of          | <sup>r</sup> hielsch Eng                  | Division of Thielsch Engineering, Inc.                        |                                     | Turn Time                             | 1 Day                 | Other                                                                                                                   |              |                                           |                   |                     | 1                                     | 2                |                              | ı  |
| 185 France           | s Avenue,Cr                               | 185 Frances Avenue, Cranston RI 02910-2211                    | 0-2211                              | Regulatory S                          | state: MA R           | Regulatory State: MA RI CT NH NJ NY ME Other                                                                            | NY ME C      | )ther                                     |                   | <u>צ</u>            | reporting Limits -                    |                  |                              |    |
| Tel. (401)46         | 11-7181 Fax                               | Tel. (401)461-7181 Fax (401)461-4486                          | 99                                  | Is this project                       | for any of the foll   | for any of the following:(please circle)                                                                                | cle)         |                                           |                   | i                   |                                       |                  |                              | 1  |
| www.esslab           | www.esslaboratory.com                     |                                                               |                                     | MA-MCP                                | Navy USACE            | CT DEP                                                                                                                  | Other        |                                           |                   | Electr              | Electonic Deliverables                | Excel* Ac        | Access PDF                   |    |
| Co. Name             |                                           | ESS Laboratory                                                |                                     | Project #                             |                       | Project Name                                                                                                            |              | 1509567                                   |                   |                     |                                       |                  |                              |    |
| Contact Person       |                                           | Shawn Morrell                                                 |                                     | Proj. Location                        |                       |                                                                                                                         |              |                                           |                   | sisyl               |                                       |                  |                              |    |
| Address              |                                           |                                                               | City, State                         |                                       |                       | Zip                                                                                                                     |              | PO#<br>B02199                             | 66                | snA                 |                                       |                  |                              |    |
| Tel.                 | Ext 3083                                  |                                                               | email:                              | smorrell@tl                           | smorrell@thielsch.com | email:                                                                                                                  |              |                                           |                   |                     |                                       |                  |                              |    |
| ESS Lab ID           | Date                                      | Collection Time                                               | Grab -G<br>Composite-C              | Matrix                                | Samı                  | Sample ID                                                                                                               | Pres<br>Code | # of<br>Containers                        | Type of Container | Vol of<br>Container | <b>201</b>                            | DOC              |                              |    |
|                      | 09/23/15                                  | 1100                                                          | ອ                                   | MS                                    | 1509567-03            |                                                                                                                         | 3            | 2                                         | >                 | 40 mL               | ×                                     |                  |                              |    |
|                      | 09/22-15-<br>0923-15                      | 0800-0080                                                     | ပ                                   | SW                                    | 1509567-04            |                                                                                                                         | က            | 2                                         | >                 | 40 mL               | ×                                     |                  |                              | 1  |
| ,                    | 09/25/15                                  | 9980                                                          | 9                                   | MS                                    | 1509567-05            |                                                                                                                         | 3            | 2                                         | >                 | 40 mL               | ×                                     |                  |                              | Ι  |
|                      | 09/24/15-<br>09/25/15                     | 0800-0800                                                     | ၁                                   | MS                                    | 1509567-06            |                                                                                                                         | က            | 2                                         | >                 | 40 mL               | ×                                     |                  |                              | 1  |
|                      |                                           |                                                               |                                     |                                       |                       |                                                                                                                         |              |                                           |                   |                     |                                       |                  |                              |    |
|                      |                                           |                                                               |                                     |                                       |                       |                                                                                                                         |              |                                           |                   |                     |                                       |                  |                              | [  |
|                      |                                           |                                                               |                                     |                                       |                       |                                                                                                                         |              |                                           |                   |                     |                                       |                  |                              |    |
|                      |                                           |                                                               |                                     |                                       |                       |                                                                                                                         |              |                                           |                   |                     |                                       |                  |                              |    |
|                      |                                           |                                                               |                                     |                                       |                       |                                                                                                                         |              |                                           |                   |                     |                                       |                  |                              |    |
| Container Type: P-F  | oly G-Glass AG-Ar                         | Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA | VOA                                 |                                       | Matrix: S-Soil SD-    | Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter | Vastewater G | W-Groundwater                             | · SW-Surface      | Water DW-Drir       | nking Water O-Oil M                   | /-Wipes F-Filter |                              |    |
| Cooler Present       | ent                                       | Yes                                                           | oN_                                 | Internal Use Only                     | ∋ Only                | Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9-                            | 1-NP, 2-H    | CI, 3-H2SO4, 4                            | 4-HNO3, 5-N       | аОН, 6-МеО          | H, 7-Asorbic Acid,                    | 8-ZnAct, 9       | 1                            |    |
| Seals Intact         | Yes                                       | No NA:                                                        |                                     | [ ] Pickup                            |                       | Sampled by:                                                                                                             |              |                                           |                   |                     |                                       |                  |                              |    |
| Cooler Temperature:  | perature:                                 |                                                               |                                     | [ ] Technician                        | an                    | Comments:                                                                                                               |              |                                           | *Please           | Provide             | *Please Provide ESS Deliverables      | ables            |                              | l  |
| Relinquished by (Si  | ignature, Date & Time                     | (e)                                                           | Received by: (Sign:                 | Received by: (Signature, Date & Time) | -ec1 91-66.1          |                                                                                                                         | Relinquished | Relinquished by: (Signature, Date & Time) | Date & Time)      | (3NG)               | Received by: (Signatu                 | ire, Date & Time | Date & Time)<br>10 \2-3   15 |    |
| Relipquished by: (Si | Relinquished by: (Signature, bate & Time) | (эг                                                           | சிசெச்சிy: (Signature, Date & Time) | ature, Date & Time)                   |                       |                                                                                                                         | Relinquished | by: KSignature, t                         | Date & Time)      | 1                   | Received by: (Signatére, Date & Time) | ire, Date & Time |                              | Т- |

<sup>\*</sup>By circling MA-MCP, client acknowledges sampels were collected in accordance with MADEP CAM VIIA

Please fax to the laboratory all changes to Chain of Custody

Report Method Blank & Laboratory Control Sample Results



EnviroSystems, Inc. P.O. Box 778 Hampton, NH 03843-0778 603-926-3345

October 22, 2015

Mr. Joe Sirbak ESS Laboratories 185 Frances Avenue Cranston, Rhode Island 02910

Dear Mr. Sirbak:

Enclosed, please find a copy of our report evaluating the toxicity of effluent samples collected from the Kendall Green Energy Facility located in Cambridge, Massachusetts during September and October 2015. Chronic toxicity was evaluated using the inland silverside minnow, *Menidia beryllina*, and the purple sea urchin, *Arbacia punctulata*.

Please note that the *A. punctulata* assay started on September 24, 2015 failed to meet the test acceptability criterion for fertilization in the receiving water diluent and all test concentrations. The assay was successfully repeated starting October 16, 2015. Bench sheets and data from the original non-compliant assay can be found in the data appendix.

Please do not hesitate to call me or Petra Karbe should you have any questions regarding the report.

Sincerely,

EnviroSystems, Incorporated

Kirk Cram

NPDES Laboratory Manager

Enclosure

WET Test Report Certification

WET Test Report Number 26494 / 26633-15-09

One (1) Copy (email only)

cc: Mr. Matt Miller (email only)

Ms. Michelle Mirenda (email only) Mr. Shawn Morrell (email only)

## WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION

#### Permittee Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on: 11/30/15

Authorized Signature

Print or Type Name

Kendall Green Energy, LLC

Print or Type the Permittee's Name

Ri Scott M& Burnec

MA0004898

Type or Print the NPDES Permit No.

#### WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION (Bioassay Laboratory)

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on: October 22, 2015

Kirk Cram

With bear

NPDES Laboratory Manager - EnviroSystems, Inc.

# TOXICOLOGICAL EVALUATION OF A POWER PLANT EFFLUENT BIOMONITORING SUPPORT FOR A NPDES PERMIT: September and October 2015

Kendall Green Energy Facility
Cambridge, Massachusetts
NPDES Permit Number MA0004898

Prepared For:

ESS Laboratories 185 Frances Avenue Cranston, Rhode Island 02910

Prepared By:

EnviroSystems, Incorporated One Lafayette Road Hampton, New Hampshire 03842

September and October 2015 Reference Number: ESS-Kendall26494&26633-15-09

#### STUDY NUMBER 26494 / 26633

#### **EXECUTIVE SUMMARY**

The following summarizes the results of modified acute and chronic exposure bioassays performed during September and October 2015 to support the NPDES biomonitoring requirements of the Kendall Green Energy Facility located in Cambridge, Massachusetts. Samples were provided by ESS Laboratories, Cranston, Rhode Island. Acute and chronic toxicity was evaluated using the salt water species, *Menidia beryllina* and *Arbacia punctulata*.

*M. beryllina* were 10 days old at the start of the test. *A. punctulata* were from cultures maintained by ESI. Original stock was obtained from commercial supply. Dilution water for the *M. beryllina* assay was receiving water collected from the Charles River upstream of the discharge. Dilution water for the *A. punctulata* assay was 30 ppt laboratory seawater collected from the Hampton/Seabrook Estuary. This water is classified as SA-1 and has been used to culture marine test organisms since 1981. Samples were received under chain of custody in good order. All sample receipt, test conditions and control endpoints were within protocol specifications, except where otherwise noted.

The results presented in this report relate only to the samples described on the chain(s) of custody and sample receipt log(s), and are intended to be used only by the submitter. Results from the chronic and modified acute exposure assays and their relationship to permit limits are summarized in the following matrix.

#### **Acute Toxicity Evaluation**

| Species           | Exposure | LC-50 | A-NOEC | Permit Limit<br>(LC-50) | Effluent Meets<br>Permit Limit | Assay Meets<br>Protocol Limits |
|-------------------|----------|-------|--------|-------------------------|--------------------------------|--------------------------------|
| Menidia beryllina | 48 Hours | >100% | NC     | Report                  | NA                             | Yes                            |

#### **Chronic Toxicity Evaluation**

| Species            | Exposure   | C-NOEC | IC-25 | Permit Limit<br>(C-NOEC) | Effluent Meets<br>Permit Limit | Assay Meets<br>Protocol Limits |
|--------------------|------------|--------|-------|--------------------------|--------------------------------|--------------------------------|
| Menidia beryllina  | 7 Days     | 100%   | >100% | Report                   | NA                             | Yes <sup>a</sup>               |
| Arbacia punctulata | 60 Minutes | 50% b  | 55.1% | Report                   | NA                             | Yes                            |

#### **COMMENTS:**

NA = Not Applicable.

NC = Not Calculated.

<sup>&</sup>lt;sup>a</sup> The minnow assay failed to meet the protocol specified statistical variability limit, expressed as MSDp, for growth (dry biomass). The MSDp was computed to be 32.9%, which exceeds the acceptable range of 11% -28% recommended by the method protocol but falls within ±2 standard deviations of EnviroSystem's historic mean for minnow growth (8.6% - 43.7%). Calculation of the IC-25 for biomass resulted in a value of >100%, which supports the calculated C-NOEC. Based on these findings these data are considered provisionally valid and a C-NOEC of 100% is considered representative of the data.

<sup>&</sup>lt;sup>b</sup> The statistical analysis for *A. punctulata* fertilization resulted in a non-standard dose response, determining that the 25% and 100% test concentrations were significantly less than the diluent control and resulting in a calculated C-NOEC of 12.5%. All test acceptability criteria were met and the IC-25 calculated for fertilization was 55.1%. According to US EPA Region I policy, fertilization is not considered to be significantly reduced if >70% (US EPA, 2013) and fertilization was above 70% in all but the 100% test concentration. Based on this weight of evidence, the C-NOEC is 50%.

# TOXICOLOGICAL EVALUATION OF A POWER PLANT EFFLUENT BIOMONITORING SUPPORT FOR A NPDES PERMIT: September and October 2015

#### **Kendall Green Energy Facility**

Cambridge, Massachusetts
NPDES Permit Number MA0004898

#### 1.0 INTRODUCTION

This report presents the results of toxicity tests completed on a series of composite effluent samples collected from the Kendall Green Energy Facility located in Cambridge, Massachusetts. Samples were provided by ESS Laboratories, Cranston, Rhode Island. Testing was based on programs and protocols developed by the US EPA (2002), with exceptions as noted by US EPA Region I (2012; 2013). A 7 day chronic and modified acute toxicity test was conducted with the inland silverside minnow, *M. beryllina*, and a 60 minute chronic fertilization assay was conducted with the purple sea urchin, *A. punctulata*. Testing was performed at EnviroSystems, Incorporated (ESI), Hampton, New Hampshire in accordance with the provisions of TNI Standards (2009).

Acute toxicity tests involve preparing a series of test concentrations by diluting effluent with control water. Groups of test organisms are exposed to each effluent concentration and a control for a specified period. In acute tests, mortality data for each concentration are used to calculate (by regression) the median lethal concentration or LC-50, defined as the effluent concentration that kills half of the test organisms. Samples with high LC-50 values are less likely to cause significant environmental impacts. The no-effect concentration is also determined to provide information about the level of effluent that would have minimal acute effects in the environment. Chronic tests evaluate toxicity based on sublethal effects. Fertilization of *Arbacia punctulata* eggs or growth (weight) of *Menidia beryllina* are measured to determine effluent concentrations that have a significant impact on the organisms. Using Analysis of Variance techniques to evaluate the data, it is possible to determine the lowest concentration that had an effect (C-LOEC) and the highest concentration where no effect was observed (C-NOEC). *A. punctulata* fertilization data are also evaluated to determine the effluent concentration where a reduction in fertilization rates occurs. This is known as the Inhibition Concentration (IC).

#### 2.0 MATERIALS AND METHODS

#### 2.1 General Methods

Toxicological and analytical protocols used in this program follow procedures primarily designed to provide standard approaches for the evaluation of toxicological effects of discharges on aquatic organisms (US EPA 2002) and for the analysis of water samples (APHA 2012). See Section 4.0 for a list of references.

#### 2.2 Test Species

When necessary, *M. beryllina* were acclimated to approximate test conditions prior to use in the assay. Test organisms were transferred to test chambers using an inverted glass pipet, minimizing the amount of water added to test solutions. Male and female *A. punctulata* are maintained in separate chambers as recommended by protocol (US EPA 2002).

#### 2.3 Effluent, Receiving Water and Laboratory Water

Effluent and receiving water collection information is provided in Table 1.Samples were received at 0-6°C as per 40 CFR §136.3 unless otherwise noted, stored at 4±2°C, and warmed to 25±1°C prior to preparing test solutions for the *M. beryllina* assay and 20±1°C for the *A. punctulata* assay. Effluent used in the *M. beryllina* assays was salinity adjusted to 25±2 ppt and the effluent used in the *A. punctulata* assay was salinity adjusted to 30±2 ppt using artificial sea salts according to protocol (US EPA 2002). Laboratory water was collected from the Hampton/Seabrook Estuary. This water is classified as SA-1 and has been used to culture marine test organisms since 1981.

Kendall Green Energy Biomonitoring Evaluation, September and October 2015. Study Number 26494 / 26633.

Total residual chlorine (TRC) was measured by amperometric titration (MDL 0.02 mg/L) in effluent and diluent samples. Samples containing ≥0.02 mg/L TRC are treated with sodium thiosulfate (US EPA 2002).

#### 2.4 Bioassays

Test concentrations for both assays were 100% (undiluted), 50%, 25%, 12.5%, and 6.25% effluent.

#### 2.4.1 *Menidia beryllina* Chronic Exposure Bioassay

The 7 day static renewal chronic exposure assay was conducted at 25±1°C with a photoperiod of 16:8 hours light:dark. Fish were maintained in 600 mL beakers containing 500 mL of test solution in each of 4 replicates containing 10 organisms/replicate. Replicates were not randomized during testing; rather, organisms were added randomly at test initiation by replicate across test solutions in an alternating fashion (alternating allocation). Newly collected effluent samples were used on days 2 and 4 of the test.

Prior to daily renewals, survival and dissolved oxygen were recorded in all replicates. Salinity, pH, and temperature were measured in one replicate of each new test treatment. Survival data were analyzed to assess acute toxicity after the initial 48 hours of exposure.

During the test, fish were fed  $\leq$  24 hour old *Artemia* nauplii. On Day 7 of the assay, surviving fish were tranquilized using Finquel® tricaine methanesulfonate, removed from test solutions, and rinsed to remove any surface detritus and salts. Fish were placed on tared containers and dried overnight at  $104\pm5^{\circ}C$  in order to obtain dry weight to the nearest 0.01 mg. To obtain dry biomass/fish for statistical comparisons, the net dry weight was divided by the number of organisms added at the start of the assay.

#### 2.4.2 Arbacia punctulata Chronic Fertilization Bioassay

Test chambers were 20 mL plastic vials with 5 mL of test solution in each of 4 replicates. Replicates were not randomized during testing; rather, organisms were added randomly at test initiation by replicate across test solutions in an alternating fashion (alternating allocation). Gametes were obtained by potassium chloride injection to induce spawning. Sperm were collected, diluted to specified concentration (see data appendix for concentration), and exposed to effluent solutions for 60 minutes. Eggs were introduced to sperm/effluent solutions and exposed for 20 minutes prior to the addition of preservative. Aliquots of preserved solution were counted to determine fertilized and unfertilized eggs.

#### 2.5 Data Analysis

Statistical analysis of acute and chronic exposure data was completed using CETIS<sup>TM</sup> v1.8.6.6 and 1.9.0.9, Comprehensive Environmental Toxicity Information System, software. The program computes acute and chronic exposure endpoints based on US EPA decision tree guidelines specified in individual test methods. If survival in the highest test concentration is >50%, the LC-50 is obtained by direct observation of the raw data. As needed, the A-NOEC is determined as the highest test concentration that caused no significant mortality. For chronic exposure endpoints statistical significance was accepted at  $\propto 0.05$ .

#### 2.6 Quality Control

As part of the laboratory quality control program, standard reference toxicant assays are completed on a regular basis for each test species. These results, presented in Table 2, provide relative health and response data while allowing for comparison with historic data sets.

#### 3.0 RESULTS AND DISCUSSION

Results of the modified acute and chronic exposure assays using *M. beryllina* are provided in Table 3. Data from the *A. punctulata* fertilization assay are summarized in Table 4. Effluent and diluent water quality data and chemistry support data are presented in Tables 5 and 6. US EPA Attachment F toxicity test summary forms are provided after the tables. Support data, including copies of laboratory bench sheets are in Appendix A.

#### 3.1 *Menidia beryllina* Chronic Exposure Bioassay

Minimum test acceptability criteria require 80% control survival, a mean dry weight of 0.5 mg/fish based on Day 7 survival, and the MSDp for biomass to be <28% for *Menidia beryllina* (US EPA 2002). Achievement of these results indicates that healthy test organisms were used and that the dilution water had no significant adverse impact on the outcome of the assay. See the Executive Summary and Table 3 for test acceptability.

#### 3.2 Arbacia punctulata Chronic Fertilization Bioassay

Protocol specifies a ≥70% fertilization rate and the MSDp for fertilization to be <25% for *Arbacia punculata* (US EPA 2002). Achievement of these results indicates that healthy test organisms were used and that the dilution water had no significant adverse impact on the outcome of the assay. See the Executive Summary and Table 4 for test acceptability.

#### 4.0 LITERATURE CITED

- 40 CFR §136.3. Code of Federal Regulations (CFR), Protection of the Environment (Title 40), Guidelines Establishing Test Procedures for the Analysis of Pollutants (Part 136), Identification of Test Procedures (sub-part 3), Table II-Required Containers, Preservation Techniques, and Holding Times.
- APHA. 2012. Standard Methods for the Examination of Water and Wastewater, 22<sup>nd</sup> Edition. Washington D.C.
- The NELAC Institute (TNI). 2009. Environmental Laboratory Sector, Volume 1: Management and Technical Requirements for Laboratories Performing Environmental Analysis (TNI Standard). EL-V1-2009.
- US EPA. 2000. Method Guidance and Recommendations for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136). EPA 821-B-00-004.
- US EPA. 2002. *Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms*. Fifth Edition. EPA-821-R-02-012.
- US EPA. 2002. Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Estuarine and Marine Organisms. EPA-821-R-02-014.
- US EPA Region I. 2012. *Marine Acute Toxicity Test Procedure and Protocol*. US EPA Region I Office, Boston, Massachusetts. July 2012.
- US EPA Region I. 2013. *Marine Chronic Toxicity Test Procedure and Protocol.* US EPA Region I Office, Boston, Massachusetts. November 2013.

TABLE 1. Summary of Sample Collection Information.
Kendall Green Energy Biomonitoring Evaluation. September and October 2015.

| Sample                  |      | Colle       | ction     | Rece     | eipt | Arrival |
|-------------------------|------|-------------|-----------|----------|------|---------|
| Description             | Type | Date        | Time      | Date     | Time | Temp °C |
| M. beryllina assay      |      |             |           |          |      |         |
| EFFLUENT                |      |             |           |          |      |         |
| Start                   | Comp | 09/20-21/15 | 0800-0800 | 09/21/15 | 1455 | 4       |
| 1 <sup>st</sup> Renewal | Comp | 09/22-23/15 | 0800-0800 | 09/23/15 | 1340 | 1       |
| 2 <sup>nd</sup> Renewal | Comp | 09/24-25/15 | 0800-0800 | 09/25/15 | 1105 | 1       |
| RECEIVING WATER         |      |             |           |          |      |         |
| Start                   | Grab | 09/21/15    | 1300      | 09/21/15 | 1455 | 4       |
| 1 <sup>st</sup> Renewal | Grab | 09/23/15    | 1100      | 09/23/15 | 1340 | 1       |
| 2 <sup>nd</sup> Renewal | Grab | 09/25/15    | 0855      | 09/25/15 | 1105 | 1       |
| A. punctulata assay     |      |             |           |          |      |         |
| EFFLUENT                |      |             |           |          |      |         |
| Start                   | Comp | 10/15-16/15 | 1145-1145 | 10/16/15 | 1315 | 2       |
| RECEIVING WATER         |      |             |           |          |      |         |
| Start                   | Grab | 10/16/15    | 1130      | 10/16/15 | 1315 | 2       |

TABLE 2. Summary of Reference Toxicant Data. Kendall Green Energy Biomonitoring Evaluation. September 2015.

| Date         | End           | point      | Value | Historic Mean/<br>Central Tendency | Acceptable<br>Range | Reference<br>Toxicant |
|--------------|---------------|------------|-------|------------------------------------|---------------------|-----------------------|
| M. beryllina |               |            |       |                                    |                     |                       |
| 09/29/15     | Survival      | 48Hr LC-50 | 6.4   | 6.3                                | 4.1 - 8.5           | SDS (mg/L)            |
| 09/29/15     | Survival      | C-NOEC     | 2.5   | 5.0                                | 2.5 - 10.0          | SDS (mg/L)            |
| 09/29/15     | Growth        | C-NOEC     | 2.5   | 5.0                                | 2.5 - 10.0          | SDS (mg/L)            |
| 09/29/15     | Growth        | MSDp       | 24.0  | 26.2                               | 8.6 - 43.7          | SDS (mg/L)            |
| A. punctula  | ta            |            |       |                                    |                     |                       |
| 09/24/15     | Fertilization | C-NOEC     | 5.0   | 10.0                               | 5.0 - 40.0          | Copper (µg/L)         |
| 09/24/15     | Fertilization | IC-25      | 10.9  | 41.1                               | 0 - 90.5            | Copper (µg/L)         |
| 09/24/15     | Fertilization | MSDp       | 11.1  | 8.5                                | 0 - 18.4            | Copper (µg/L)         |

Means and Acceptable Ranges based on the most recent 20 reference toxicant assays

TABLE 3. *M. beryllina* Chronic and Modified Acute Exposure Assay Data Summary. Kendall Green Energy Biomonitoring Evaluation. September 2015.

| Effluent | Mean Perce    | nt Survival | Mean Biomass              | •            | nificant Difference<br>sed on |
|----------|---------------|-------------|---------------------------|--------------|-------------------------------|
| Conc.    | Day 2         | Day 7       | (mg/fish)                 | Survival (%) | Growth (Biomass)              |
| LAB      | 100.0%        | 100.0%      | 0.914                     | -            | -                             |
| RW       | 100.0%        | 100.0%      | 0.846                     | -            | -                             |
| 6.25%    | 100.0%        | 100.0%      | 0.865                     | No           | No                            |
| 12.5%    | 97.5%         | 97.5%       | 0.890                     | No           | No                            |
| 25.0%    | 100.0%        | 97.5%       | 0.857                     | No           | No                            |
| 50.0%    | 100.0%        | 100.0%      | 0.948                     | No           | No                            |
| 100.0%   | 97.5%         | 95.0%       | 1.040                     | No           | No                            |
|          | LC-50 = >100% | %           | MSDp = 32.9% <sup>a</sup> | NOEC = 100%  | NOEC = 100%<br>IC-25 = >100%  |

#### **COMMENTS:**

RW = Receiving water; used as the diluent.

TABLE 4. A. punctulata Chronic Exposure Assay Data Summary.

Kendall Green Energy Biomonitoring Evaluation. October 2015.

|                         |       | TREAT  | MENTS              |       |                  |       |                  |
|-------------------------|-------|--------|--------------------|-------|------------------|-------|------------------|
|                         | Lab   | RW     | 6.25%              | 12.5% | 25%              | 50%   | 100%             |
| Mean % Fertilization    | 76.6% | 81.6%  | 67.0%              | 65.0% | 60.8%            | 70.2% | 9.0%             |
| Significantly < Diluent | -     | -      | No                 | No    | Yes <sup>a</sup> | No    | Yes <sup>a</sup> |
|                         |       |        |                    |       |                  |       |                  |
|                         |       | C-NOEC | 50.0% <sup>a</sup> |       |                  |       |                  |
|                         |       | C-LOEC | 100.0%             |       |                  |       |                  |
|                         |       | IC-25  | 55.1%              |       |                  |       |                  |
|                         |       | MSDp   | 15.1%              |       |                  |       |                  |

#### **COMMENTS**

RW = Receiving water; used as a control only.

<sup>&</sup>lt;sup>a</sup> The minnow assay failed to meet the protocol specified statistical variability limit, expressed as MSDp, for growth (dry biomass). The MSDp was computed to be 32.9%, which exceeds the acceptable range of 11% - 28% recommended by the method protocol but falls within ±2 standard deviations of EnviroSystem's historic mean for minnow growth (8.6% - 43.7%). Calculation of the IC-25 for biomass resulted in a value of >100%, which supports the calculated C-NOEC. Based on these findings these data are considered provisionally valid and a C-NOEC of 100% is considered representative of the data.

<sup>&</sup>lt;sup>a</sup> The statistical analysis for *A. punctulata* fertilization resulted in a non-standard dose response, determining that the 25% and 100% test concentrations were significantly less than the diluent control and resulting in a calculated C-NOEC of 12.5%. All test acceptability criteria were met and the IC-25 calculated for fertilization was 55.1%. According to US EPA Region I policy, fertilization is not considered to be significantly reduced if >70% (US EPA, 2013) and fertilization was above 70% in all but the 100% test concentration. Based on this evidence, the C-NOEC is 50%.

TABLE 5. *M. beryllina* Initial Water Quality and Analytical Data Summary Kendall Green Energy Biomonitoring Evaluation. September 2015.

| PARAMETER              | UNITS | EFFLUENT | RECEIVING WATER |
|------------------------|-------|----------|-----------------|
| pH - As Received       | SU    | 7.67     | 8.49            |
| Salinity - As Received | ppt   | 1        | 1               |
| TRC                    | mg/L  | <0.02    | <0.02           |

#### **COMMENTS:**

Additional water quality data are provided in Appendix A.

TABLE 6. A. punctulata Initial Water Quality and Analytical Data Summary Kendall Green Energy Biomonitoring Evaluation. October 2015.

| PARAMETER              | UNITS | EFFLUENT | RECEIVING WATER | LABORATORY<br>SEAWATER |
|------------------------|-------|----------|-----------------|------------------------|
| pH - As Received       | SU    | 7.23     | 7.47            | 8.07                   |
| Salinity - As Received | ppt   | <1       | <1              | 31                     |
| TRC                    | mg/L  | <0.02    | <0.02           | _ a                    |

#### **COMMENTS:**

Additional water quality data are provided in Appendix A.

<sup>&</sup>lt;sup>a</sup> TRC not measured in laboratory seawater.

# **TOXICITY TEST SUMMARY SHEET**

| FACILITY NAME:<br>NPDES PERMIT NO.:                                                                          | Kendall Green Er<br>MA0004898                                                                                                | nergy Facility                                        | _TEST START D<br>_TEST END DAT                                                            |                                           | 09/22/15<br>09/29/15                                           |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|
| TEST TYPEAcuteChronic X Modified Chronic (Reporting Acute Values)24 Hour Screen                              | TEST SPECIES  — Pimephales p  — Ceriodaphnia  — Daphnia pule  — Americamysi  — Cyprinodon v  X Menidia beryo  — Arbacia punc | a dubia<br>ex<br>is bahia<br>variegatus<br>Illina     | SAMPLE TYPE Prechlorinate Dechlorinate Chlorine Sp Chlorinated Unchlorinate X No Detectal | ted<br>ed<br>iked in Lab<br>on Site<br>ed | SAMPLE METHOD  Grab  X Composite  Flow-thru  Other  on Receipt |
| DILUTION WATER:  X Receiving water colle of contamination; Re                                                | ceiving Water Nar                                                                                                            | me: Charles River                                     | •                                                                                         |                                           | city or other sources                                          |
| water; Receiving WaSynthetic water prep chemicals; or deionizArtificial sea salts miDeionized water andOther | ared using either Noted water combined water combined with deionized                                                         | Millipore Milli-Q or<br>ed with mineral wa<br>d water | equivalent deion                                                                          | nized water and                           | reagent grade                                                  |
| EFFLUENT SAMPLING EFFLUENT CONCENTS Permit Limit Concentration                                               | RATIONS TESTED                                                                                                               | ` '                                                   | 09/22-23/15<br>5; 25; 50; 100                                                             | 09/24-25/15                               | -                                                              |
| Was the effluent salinity                                                                                    | adjusted?                                                                                                                    | Yes If "yes", to                                      | o what level?                                                                             | 24                                        | _ppt                                                           |
| REFERENCE TOXICAN                                                                                            | _                                                                                                                            | 09/29/15 LC-50<br>09/29/15 NOEC                       |                                                                                           | Dodecyl Sodio<br>Dodecyl Sodio            |                                                                |
|                                                                                                              | PERI                                                                                                                         | MIT LIMITS AND<br>Test Acceptabil                     |                                                                                           | <b>;</b>                                  |                                                                |
| Mean Diluent Control S                                                                                       | Survival: 100                                                                                                                | %                                                     | Mean Dry Weig<br>MSDp:                                                                    | ht/Fish:                                  | 0.846 mg<br>32.9 %                                             |
| LIMITS                                                                                                       |                                                                                                                              |                                                       | RESULTS                                                                                   |                                           |                                                                |
| LC-50:% A-NOEC:%                                                                                             |                                                                                                                              |                                                       | LC-50<br>Upper Limit:<br>Lower Limit:<br>Method:                                          |                                           | >100 % % % Direct Observation                                  |
| C-NOEC:%                                                                                                     |                                                                                                                              |                                                       | A-NOEC<br>C-NOEC<br>C-LOEC<br>IC- 25                                                      |                                           | - %<br>100 %<br>>100 %<br>>100 %<br>>100 %                     |

# **TOXICITY TEST SUMMARY SHEET**

| FACILITY NAME:<br>NPDES PERMIT NO.:                                                                      | Kendall Green End<br>MA0004898                                                                                                                                           | ergy Facility                                       | _TEST START  <br>_TEST END DA         |                                                 | 10/16/15<br>10/16/15                                             |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------|-------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|--|--|
| TEST TYPEAcute _X ChronicModified Chronic (Reporting Acute Values)24 Hour Screen                         | TEST SPECIES  Pimephales pi Ceriodaphnia Daphnia pulex Americamysis Cyprinodon va Menidia beryll X Arbacia puncti                                                        | dubia<br>c<br>bahia<br>ariegatus<br>ina             | Chlorinated                           | ated<br>ted<br>piked in Lab<br>d on Site<br>ted | SAMPLE METHOD  Grab  X Composite  Flow-thru  Other  Upon Receipt |  |  |  |  |  |  |  |
| DILUTION WATER:                                                                                          | ected at a noint uns                                                                                                                                                     | tream or away fro                                   | m the discharge                       | free from to                                    | exicity or other sources                                         |  |  |  |  |  |  |  |
| of contamination; Re                                                                                     | eceiving Water Nam                                                                                                                                                       | e: Charles River                                    |                                       |                                                 |                                                                  |  |  |  |  |  |  |  |
|                                                                                                          | X_Alternate surface water of known quality and hardness, to generally reflect the characteristics of the receiving water; Receiving Water Name: Hampton Seabrook estuary |                                                     |                                       |                                                 |                                                                  |  |  |  |  |  |  |  |
| Synthetic water prep<br>chemicals; or deioniz<br>Artificial sea salts mi<br>Deionized water and<br>Other | zed water combined<br>ixed with deionized<br>I hypersaline brine                                                                                                         | d with mineral wate<br>water                        |                                       | ized water ar                                   | nd reagent grade                                                 |  |  |  |  |  |  |  |
| EFFLUENT SAMPLING EFFLUENT CONCENTS Permit Limit Concentration                                           | RATIONS TESTED                                                                                                                                                           | <u>10/15-16/15</u><br><b>(%):</b> 6.25; 12.5;<br>_% | 25; 50; 100                           |                                                 |                                                                  |  |  |  |  |  |  |  |
| Was the effluent salinity                                                                                | adjusted?                                                                                                                                                                | Yes If "yes", to                                    | what level?                           | 29                                              | _ppt                                                             |  |  |  |  |  |  |  |
| REFERENCE TOXICAN                                                                                        | IT TEST DATE:                                                                                                                                                            | 09/24/15 IC-25<br>09/24/15 NOEC                     |                                       | Copper<br>Copper                                |                                                                  |  |  |  |  |  |  |  |
|                                                                                                          | PERM                                                                                                                                                                     | IIT LIMITS AND T<br>Test Acceptability              |                                       |                                                 |                                                                  |  |  |  |  |  |  |  |
| Mean Diluent Control F                                                                                   | Fertilization: 76.6                                                                                                                                                      | _ %                                                 | MSDp:                                 |                                                 | <u>15.1</u> %                                                    |  |  |  |  |  |  |  |
| LIMITS                                                                                                   |                                                                                                                                                                          |                                                     | RESULTS                               |                                                 |                                                                  |  |  |  |  |  |  |  |
| LC-50:% A-NOEC:%                                                                                         |                                                                                                                                                                          |                                                     | LC-50<br>Upper Limit:<br>Lower Limit: |                                                 |                                                                  |  |  |  |  |  |  |  |
| C-NOEC:%                                                                                                 |                                                                                                                                                                          |                                                     | Method:<br>A-NOEC<br>C-NOEC<br>C-LOEC |                                                 | Dunnett's  - %  50 %  100 %                                      |  |  |  |  |  |  |  |
| IC %                                                                                                     |                                                                                                                                                                          |                                                     | IC- <u>10</u><br>IC- <u>25</u>        |                                                 |                                                                  |  |  |  |  |  |  |  |

### **APPENDIX A**

### **DATA SHEETS**

## STATISTICAL SUPPORT

| Contents                                                                   | Number of<br>Pages |
|----------------------------------------------------------------------------|--------------------|
| Methods Used in NPDES Permit Biomonitoring Testing                         | 1                  |
| Massachusetts DEP Accreditation Certification and Certified Parameter List | 3                  |
| M. beryllina 7 Day Chronic Assay Daily Observation Bench Sheet             | 1                  |
| M. beryllina Larval Fish Dry Weights Summary Sheet                         | 1                  |
| M. beryllina Survival and Growth Statistics                                | 6                  |
| M. beryllina Organism Culture Record                                       | 1                  |
| A. punctulata Fertilization Assay Water Quality and Sperm Dilutions        | 1                  |
| A. punctulata Egg Count Data Sheet                                         | 1                  |
| A. punctulata Fertilization Rate Statistical Analysis                      | 4                  |
| Water Quality Bench Sheets                                                 | 3                  |
| Dilution Preparation and Water Quality Instrument Bench Sheets             | 3                  |
| Sample Receipt Record                                                      | 2                  |
| Chain of Custody                                                           | 4                  |
| Assay Review Checklist                                                     | 2                  |
| Non-Compliance Bench Sheets and Data                                       | 7                  |
| Total Appendix Pages                                                       | 40                 |

# METHODS USED IN NPDES PERMIT BIOMONITORING TESTING

| Parameter                     | Method                                                                     |  |  |  |  |  |  |  |
|-------------------------------|----------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Acute Exposure Bioassays:     |                                                                            |  |  |  |  |  |  |  |
| Ceriodaphnia dubia            | EPA-821-R-02-012 2002.0                                                    |  |  |  |  |  |  |  |
| Daphnia pulex                 | EPA-821-R-02-012 2021.0                                                    |  |  |  |  |  |  |  |
| Pimephales promelas           | EPA-821-R-02-012 2000.0                                                    |  |  |  |  |  |  |  |
| Americamysis bahia            | EPA-821-R-02-012 2007.0                                                    |  |  |  |  |  |  |  |
| Menidia beryllina             | EPA-821-R-02-012 2006.0                                                    |  |  |  |  |  |  |  |
| Cyprinodon variegatus         | EPA-821-R-02-012 2004.0                                                    |  |  |  |  |  |  |  |
| Chronic Exposure Bioassays:   |                                                                            |  |  |  |  |  |  |  |
| Ceriodaphnia dubia            | EPA-821-R-02-013 1002.0                                                    |  |  |  |  |  |  |  |
| Pimephales promelas           | EPA-821-R-02-013 1000.0                                                    |  |  |  |  |  |  |  |
| Cyprinodon variegatus         | EPA-821-R-02-014 1004.0                                                    |  |  |  |  |  |  |  |
| Menidia beryllina             | EPA-821-R-02-014 1006.0                                                    |  |  |  |  |  |  |  |
| Arbacia punctulata            | EPA-821-R-02-014 1008.0                                                    |  |  |  |  |  |  |  |
| Champia parvula               | EPA-821-R-02-014 1009.0                                                    |  |  |  |  |  |  |  |
| Trace Metals:                 |                                                                            |  |  |  |  |  |  |  |
| Trace Metals                  | EPA 200.8/SW 6020, EPA 245.7                                               |  |  |  |  |  |  |  |
| Hardness                      | Standard Methods 22 <sup>nd</sup> Edition - Method 2340 B                  |  |  |  |  |  |  |  |
| Wet Chemistries:              |                                                                            |  |  |  |  |  |  |  |
| Alkalinity                    | EPA 310.2                                                                  |  |  |  |  |  |  |  |
| Chlorine, Residual            | Standard Methods 22 <sup>nd</sup> Edition - Method 4500-CI D               |  |  |  |  |  |  |  |
| Total Organic Carbon          | Standard Methods 22 <sup>nd</sup> Edition - Method 5310 C                  |  |  |  |  |  |  |  |
| Specific Conductance          | Standard Methods 22 <sup>nd</sup> Edition - Method 2510 B                  |  |  |  |  |  |  |  |
| Nitrogen - Ammonia            | Standard Methods $22^{\rm nd}$ Edition - Method $4500\text{-NH}_3\text{G}$ |  |  |  |  |  |  |  |
| рН                            | Standard Methods 22 <sup>nd</sup> Edition - Method 4500-H+ B               |  |  |  |  |  |  |  |
| Solids, Total (TS)            | Standard Methods 22 <sup>nd</sup> Edition - Method 2540 B                  |  |  |  |  |  |  |  |
| Solids, Total Dissolved (TDS) | Standard Methods 22 <sup>nd</sup> Edition - Method 2540 C                  |  |  |  |  |  |  |  |
| Solids, Total Suspended (TSS) | Standard Methods 22 <sup>nd</sup> Edition - Method 2540 D                  |  |  |  |  |  |  |  |
| Dissolved Oxygen              | Standard Methods 22 <sup>nd</sup> Edition - Method 4500-O G                |  |  |  |  |  |  |  |
|                               |                                                                            |  |  |  |  |  |  |  |

Please visit our web site at <a href="https://www.envirosystems.com">www.envirosystems.com</a> for a copy of our accreditations and state certifications.

# The Commonwealth of Massachusetts



# Department of Environmental Protection

Division of Environmental Analysis Senator William X. Wall Experiment Station

# certifies

M-NH906

ENVIROSYSTEMS INC 1 LAFAYETTE RD HAMPTON, NH 03842-0000

Laboratory Director: RUSSELL D. FOSTER

for the analysis of NON POTABLE WATER (CHEMISTRY)

pursuant to 310 CMR 42.00

This certificate supersedes all previous Massachusetts certificates issued to this laboratory. The laboratory is regulated by and shall be responsible for being in compliance with Massachusetts regulations at 310 CMR 42.00.

This certificate is valid only when accompanied by the latest dated Certified Parameter List as issued by the Massachusetts D.E.P. Contact the Division of Environmental Analysis to verify the current certification status of the laboratory.

Certification is no guarantee of the validity of the data. This certification is subject to unannounced laboratory inspections.

Issued:

01 JUL 2015

**Expires:** 30 JUN 2016

Director, Division of Environmental Analysis

ecar Q. Parcala

# COMMONWEALTH OF MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION

Certified Parameter List as of:

01 JUL 2015

M-NH906

ENVIROSYSTEMS INC

HAMPTON NH

| NON POTABLE WATER (CHEMISTRY) | Effective 01 JUL 2015 Date   | Expiration 30 JUN 2016<br>Date |
|-------------------------------|------------------------------|--------------------------------|
| <u>Analytes</u>               |                              | <u>Methods</u>                 |
| ALUMINUM                      |                              | EPA 200.8                      |
| ANTIMONY                      |                              | EPA 200.8                      |
| ARSENIC                       |                              | EPA 200.8                      |
| BERYLLIUM                     |                              | EPA 200.8                      |
| CADMIUM                       |                              | EPA 200.8                      |
| CHROMIUM                      |                              | EPA 200.8                      |
| COBALT                        |                              | EPA 200.8                      |
| COPPER                        |                              | EPA 200.8                      |
| IRON                          |                              | EPA 200.8                      |
| LEAD                          |                              | EPA 200.8                      |
| MANGANESE                     |                              | EPA 200.8                      |
| MERCURY                       |                              | EPA 245.7                      |
| MOLYBDENUM                    |                              | EPA 200.8                      |
| NICKEL                        |                              | EPA 200.8                      |
| SELENIUM                      |                              | EPA 200.8                      |
| SILVER                        |                              | EPA 200.8                      |
| THALLIUM                      |                              | EPA 200.8                      |
| VANADIUM                      |                              | EPA 200.8                      |
| ZINC                          |                              | EPA 200.8                      |
| PH                            |                              | SM 4500-H-B                    |
| SPECIFIC CONDUCTIVITY         |                              | SM 2510B                       |
| TOTAL DISSOLVED SOLIDS        |                              | SM 2540C                       |
| ALKALINITY, TOTAL             |                              | EPA 310.2                      |
| CHLORIDE                      |                              | SM 4500-CL-C                   |
| CHLORIDE                      |                              | EPA 300.0                      |
| SULFATE                       |                              | EPA 300.0                      |
| AMMONIA-N                     |                              | SM 4500-NH3-B, G               |
| NITRATE-N                     |                              | SM 4500-NO3-F                  |
| KJELDAHL-N                    |                              | SM 4500-NH3-B, G               |
| ORTHOPHOSPHATE                |                              | SM 4500-P-E                    |
| PHOSPHORUS, TOTAL             |                              | SM 4500-P-B,E                  |
| BIOCHEMICAL OXYGEN DEMAND     |                              | SM 5210B                       |
| TOTAL ORGANIC CARBON          | •                            | SM 5310C                       |
| CYANIDE, TOTAL                |                              | SM 4500-CN-C,E                 |
| NON-FILTERABLE RESIDUE        |                              | SM 2540D                       |
| OIL AND GREASE                |                              | EPA 1664                       |
| VOLATILE HALOCARBONS          |                              | EPA 624                        |
| VOLATILE AROMATICS            |                              | EPA 624                        |
| CHLORDANE                     |                              | EPA 608                        |
| ALDRIN                        |                              | EPA 608                        |
| DIELDRIN                      |                              | EPA 608                        |
| DDD                           |                              | EPA 608                        |
| DDE                           |                              | EPA 608                        |
| June 19, 2015                 | *= Provisional Certification | Page 1 of 2                    |

# COMMONWEALTH OF MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION

Certified Parameter List as of:

01 JUL 2015

M-NH906

**ENVIROSYSTEMS INC** 

HAMPTON NH

| NON POTABLE WATER (CHEMISTRY)    | Effective<br>Date | 01 JUL 2015 | Expiration 30 JUN 2016<br>Date |
|----------------------------------|-------------------|-------------|--------------------------------|
| Analytes                         |                   |             | Methods                        |
| DDT                              |                   |             | EPA 608                        |
| HEPTACHLOR                       |                   |             | EPA 608                        |
| HEPTACHLOR EPOXIDE               |                   |             | EPA 608                        |
| SVOC-ACID EXTRACTABLES           |                   |             | EPA 625                        |
| SVOC-BASE/NEUTRAL EXTRACTABLES   |                   |             | EPA 625                        |
| POLYCHLORINATED BIPHENYLS (WATER |                   |             | EPA 608                        |

# Menidia beryllina 7 DAY CHRONIC ASSAY

| STUDY:   |          | CLIE<br>ESS | NT:<br>Labora                            | SAMPLE:<br>atories Effluent - Kendall Stati |        |       |      | ation        | DILU<br>Rece | ENT:<br>iving Wa | ater |      | 1   | <b>BATCH</b><br>965 091 |      |             |
|----------|----------|-------------|------------------------------------------|---------------------------------------------|--------|-------|------|--------------|--------------|------------------|------|------|-----|-------------------------|------|-------------|
|          |          |             | 2002-00-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | NUME                                        | BER OF | SURVI | ORS  |              |              | OLD DISSOLVED O  |      |      |     | XYGEN (mg/L)            |      |             |
| CON      | REP      | 0           | 1                                        | 2                                           | 3      | 4     | 5    | 6            | 7            | 1                | 2    | 3    | 4   | 5                       | 6    | 7           |
|          | Α        | 10          | 16                                       | 10                                          | 10     | 10    | 10   | 10           | 10           | 6.2              | 6.0  | 5.3  | 560 | 5.8                     | 5.8  | 6.0         |
| LAB      | В        | 10          | (0                                       | 10                                          | 10     | 10    | 10   | 10           | 10           | 6.0              | 6.0  | 51   | 5.5 | 5,7                     | 6.0  | 0.0         |
| SALT     | С        | 10          | 16                                       | 10                                          | 10     | 10    | 10   | 10           | 10           | 5.9              | 6.0  | 5.0  | 5.6 | 5,7                     | 5.8  | 6.0         |
|          | D        | 10          | (0                                       | 10                                          | 10     | 10    | 10   | 10           | 10           | 5.6              | 5.8  | 49   | 5.6 | 5.7                     | 5.6  | 5.8         |
|          | A        | 10          | 10                                       | 10                                          | 10     | 10    | 10   | 10           | 10           | 5.1              | 5.5  | 4.9  | 55  | 5.6                     | 5.3  | 5.9         |
| RW       | В        | 10          | 10                                       | 10                                          | 10     | 10    | 10   | 10           | 10           | 5.1              | 5.4  | 4.9  | 5,5 | 5.5                     | 5.3  | 5.6         |
| 1,444    | С        | 10          | 10                                       | 10                                          | 10     | 10    | 10   | 10           | 10           | 5.1              | 5.5  | 4.9  | 5,4 | 5.3                     | 5.1  | 57.6        |
|          | D        | 10          | 10                                       | 10                                          | 10     | 10    | 10   | 10           | 10           | 5.1              | 5.5  | 4.9  | 5.3 | 5.2                     | 5.1  | 55          |
|          | Α        | 10          | (0)                                      | P                                           | 10     | 10    | 10   | 10           | 10           | 5.0              | 5.5  | 4.7  | 5.2 | 5.2                     | 5.1  | 5.4         |
| 6.25%    | В        | 10          | 10                                       | 10                                          | 0      | 10    | 10   | 10           | 10           | 5.0              | 5.4  | 47   | 5.2 | 5:1                     | 5.0  | 5.3         |
| 0.2070   | С        | 10          | (0                                       | 10                                          | 10     | 10    | 10   | 10           | 10           | 5.1              | 5.4  | 4.6  | 5:1 | 5.0                     | 5.2  | 53          |
|          | D        | (0          | 10                                       | 10                                          | 10     | 10    | 10   | 10           | 10           | 5.2              | 5.5  | 4.ce | 5.1 | 5.0                     | 5.2  | 5.4         |
|          | A        | 10          | 10                                       | 10                                          | 10     | 10    | 10   | 10           | 10           | 5.4              | 5.7  | 4.9  | 53  | 5.2                     | 5.3  | 5.5         |
| 12.5%    | В        | 10          | q                                        | 9                                           | 9      | 9     | 9    | 9            | 9            | 5.G              | 5.8  | 4.8  | 5,0 | 5.2                     | 5.1  | <i>8</i> 13 |
|          | С        | 10          | 10                                       | 10                                          | 10     | 10    | 10   | 10           | 10           | 5.5              | 5.8  | 4le  | 4.9 | 5.1                     | 5.1  | 5,7         |
|          | D        | 10          | 10                                       | 10                                          | 10     | 10    | 10   | 10           | 10           | 5^.4             | 5.4  | 4.6  | 4.4 | 5.0                     | 5.0  | 5,2         |
| ]        | A        | 10          | 10                                       | 10                                          | 10     | 9     | 9    | 9            | 9            | 5.3              | 5.6  | 4.7  | 4.4 | 5.0                     |      | 5.2         |
| 25%      | В        | 10          | 0                                        | 10                                          | 10     | 10    | 10   | 10           | 10           | 5.3              | 55.  | 50   | 49  | 50                      | 5.1  | 5.l         |
|          | С        | 10          | 10                                       | 10                                          | 10     | 10    | 10   | 10           | 1Ô           | 5.3              | 5.4  | 5.0  | 4.9 | 5.0                     | 5.2  | 57.8        |
|          | D        | 10          | 10                                       | 10                                          | 10     | 10    | 10   | 10           | 10           | 5.3              | 5.6  | 4.9  | 5.0 | 5.0                     | 5.2  | 5.4         |
| -        | Α        | 10          | 10                                       | 10                                          | 10     | 10    | 10   | 10           | 10           | 5.5              | 5.6  | 4.9  | 51  | 5.0                     | 5.3  | 5.3         |
| 50%      | <u>B</u> | 10          | (0)                                      | 10                                          | 10     | 10    | 10   | 10           | 16           | 5.4              | 5.5  | 49   | 51  | 4.9                     | 5.1  | 5.2         |
|          | <u>C</u> | 10          | 10                                       | 10                                          | 10     | 10    | (0   | (0)          | 10           | 5.5              | 5.4  | 4.0  | 5,2 | 4.8                     | 4.10 | 5.2         |
|          | <u>D</u> | 10          | 10                                       | 10                                          | 10     | 10    | 10   | 10           | 10           | 5,5              |      | 5.0  |     | <u> </u>                |      |             |
|          | <u>A</u> | 10          | 10                                       | 10                                          | 10     | 10    | 10   | 10           | 10           | 5.4              | 3.6  | 49   | 513 | Ц, П                    |      | 5.2         |
| 100%     | В        | 10          | 10                                       | 0                                           | 10     | 10    | 10   | 10           | 9            | 5.2              | 5.4  | 50   |     | 7.5                     | 4.6  |             |
| -        | C        | 10          | 10                                       | 10                                          | 10     | 10    | 10   | 10           | 10           | 5.4              |      | 50   | 53  | 4,4                     | 4,6  | 47          |
|          | D        | <i>(</i> 0  | 10                                       | 9                                           | 9      | 9     | 9    | 9            | 9            | 5.4              | 5,3  | 50   | 5,4 | 4.6                     | 4.6  | 9.7         |
| INC TEM  | IP:      | 25          | 25                                       | 25                                          | 25     | 25    | 25   | 25           | 7025         |                  |      |      |     |                         |      |             |
| DATE:    |          | 09/22/15    | 9/23/15                                  | 9/24                                        | 9/25   | 9/26  |      | <u>09/28</u> | 9/29         |                  |      |      |     |                         |      |             |
| TIME:    |          | 1536        | 1230                                     | 1000                                        |        | 0945  | 1120 |              | 0855         |                  |      |      |     |                         |      |             |
| INITIALS | :        | EH          | EB                                       | NP                                          | W      | NP    | EH   | HK           | [3] W.       |                  |      |      |     |                         |      | ,           |

(3) NP 9/29 STUDY: 26494

**CLIENT: ESS Labratories** 

PROJECT:

**ASSAY: ESS** 

TASK: Dry Weight Data - Balance Output File BALANCE: Ohaus Discovery Balance Model DV215CD

Serial #: 1124024313

| Da     | te / Init: | 10/07/15 LB   | 09/29/15 1310 CS | Dupli         | cates        |
|--------|------------|---------------|------------------|---------------|--------------|
| Sample | Rep        | Total Wt (mg) | Tare Wt (mg)     | Total Wt (mg) | Tare Wt (mg) |
| Lab    | A          | 16.50         |                  | 16.5          | 7.21         |
| Lab    | В          | 17.05         | 9.32             |               |              |
| Lab    | С          | 17.32         | 7.49             | Removed Salt  |              |
| Lab    | D          | 19.43         | 9.64             |               |              |
| RW     | Α          | 14.40         | 6.15             |               |              |
| RW     | В          | 16.85         | 7.80             |               |              |
| RW     | С          | 16.98         | 8.36             |               |              |
| RW     | D          | 19.18         | 11.26            |               |              |
| 6.25%  | Α          | 18.34         | 9.54             |               |              |
| 6.25%  | В          | 17.29         | 7.52             |               |              |
| 6.25%  | С          | 17.28         | 9.06             |               |              |
| 6.25%  | D          | 18.36         | 10.54            |               | 10.58        |
| 12.5%  | Α          | 14.13         | 6.92             | 14.1          |              |
| 12.5%  | В          | 17.02         | 7.94             |               |              |
| 12.5%  | С          | 19.71         | 10.08            |               |              |
| 12.5%  | D          | 19.33         | 9.64             |               |              |
| 25%    | Α          | 17.41         | 9.10             |               |              |
| 25%    | В          | 15.85         | 8.76             |               |              |
| 25%    | С          | 34.27         | 25.60            |               |              |
| 25%    | D          | 20.31         | 10.10            |               |              |
| 50%    | Α          | 18.22         | 9.50             |               |              |
| 50%    | В          | 15.49         | 7.06             |               |              |
| 50%    | С          | 20.96         | 9.98             |               | 10.02        |
| 50%    | D          | 19.56         | 9.75             | Removed Salt  |              |
| 100%   | Α          | 21.90         | 7.53             | 21.92         | Removed Salt |
| 100%   | В          | 20.04         | 11.16            |               |              |
| 100%   | С          | 17.80         | 11.04            |               |              |
| 100%   | D          | 22.08         | 10.65            |               |              |

# **CETIS Summary Report**

Report Date:

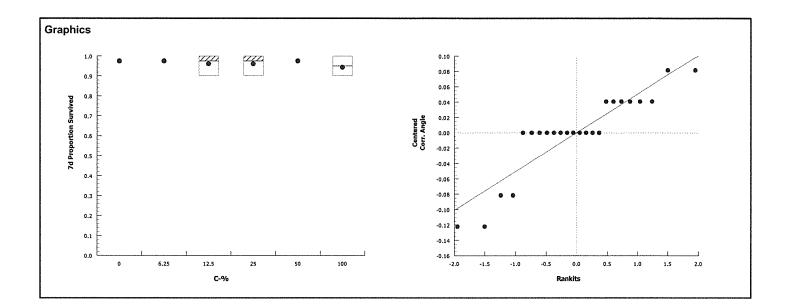
21 Oct-15 13:40 (p 1 of 2)

Test Code:

26494Mb | 08-8998-5788

| Menidia beryl                | lina 7-d Larval S              | urvival    | and Growt       | h Test            |                  |                |              |        |                        |                                         | EnviroSys        | stems, Inc.       |
|------------------------------|--------------------------------|------------|-----------------|-------------------|------------------|----------------|--------------|--------|------------------------|-----------------------------------------|------------------|-------------------|
| Batch ID:                    | 00-7173-5136                   | 7          | Test Type:      | Growth-Surviva    | al (7d)          |                |              | Analy  | st: Kir                | k Cram                                  | <u> </u>         |                   |
| Start Date:                  | 22 Sep-15 15:30                | ) <b>F</b> | Protocol:       | EPA/821/R-02-     | 014 (2002)       |                |              | Dilue  |                        | ceiving Wate                            | r                |                   |
| Ending Date:                 | 29 Sep-15 10:55                | 5 5        | Species:        | Menidia beryllir  | па               |                |              | Brine  | : Ge                   | neric comme                             | rcial salts      |                   |
| Duration:                    | 6d 19h                         |            | Source:         | ABS - Aquatic     | Biosystems,      | СО             |              | Age:   | 10                     | d                                       |                  |                   |
| Sample ID:                   | 02-5542-9832                   |            | Code:           | 26494             |                  |                |              | Client | t: ES                  | S Laboratory                            | 7                |                   |
| 1 -                          | 21 Sep-15 08:00                |            | Material:       | Power Plant Ef    |                  |                |              | Proje  | ct: Th                 | ird Quarter W                           | /ET Complia      | ance Test         |
|                              | : 21 Sep-15 14:55              |            | Source:         | Kendall Green     | 0.               | •              |              |        |                        |                                         |                  |                   |
| Sample Age:                  | 32h (4 °C)                     |            | Station:        | Kendall Green     | Energy (MA       | 0004898)       |              |        |                        |                                         |                  |                   |
| Comparison S                 |                                |            |                 |                   |                  |                |              |        |                        |                                         |                  |                   |
| Analysis ID                  | Endpoint                       |            | NOEL            |                   | TOEL             | PMSD           | TU           |        | Method                 |                                         |                  | <del></del>       |
| 07-4121-0999                 | 7d Proportion S                |            | 100             | >100              | NA               | 6.72%          | 1            |        |                        | ny-One Rank                             |                  |                   |
| 05-4280-7883<br>21-1392-4416 | Mean Dry Bioma                 | _          | 100             | >100              | NA               | 32.9%          | 1            |        |                        | Multiple Com                            | -                |                   |
| 21-1392-4410                 | Mean Dry Weigl                 | nt-mg      | 100             | >100              | NA               | 33.8%          | 1            |        | Dunnett                | Multiple Com                            | parison i es     | Д                 |
| Point Estimat                | •                              |            |                 |                   |                  |                |              |        |                        |                                         |                  |                   |
| Analysis ID                  | Endpoint                       |            | Level           | %                 | 95% LCL          | 95% UCL        | TU           |        | Method                 | *************************************** |                  | ····              |
| 21-3162-8888                 | Mean Dry Bioma                 | ass-mg     | IC25            | >100              | N/A              | N/A            | <1           |        | Linear In              | terpolation (I                          | CPIN)            |                   |
| Test Acceptal                | oility                         |            |                 |                   |                  |                |              |        |                        |                                         |                  |                   |
| Analysis ID                  | Endpoint                       |            | Attrib          |                   | Test Stat        | TAC Limi       | its          |        | Overlap                | Decision                                |                  |                   |
| 07-4121-0999                 | 7d Proportion St               | urvived    | Contro          | ol Resp           | 1                | 0.8 - NL       |              |        | Yes                    | Passes A                                | cceptability     | Criteria          |
| 05-4280-7883                 | Mean Dry Bioma                 | •          |                 | ol Resp           | 0.846            | 0.5 - NL       |              |        | Yes                    |                                         | cceptability     |                   |
| 21-3162-8888                 | Mean Dry Bioma                 | -          |                 | ol Resp           | 0.846            | 0.5 - NL       | _            |        | Yes                    |                                         | cceptability     |                   |
| 05-4280-7883                 | Mean Dry Bioma                 | ass-mg     | PMSC            | )                 | 0.3295           | 0.11 - 0.28    | 3            |        | Yes                    | Above Ac                                | ceptability C    | Criteria          |
| 7d Proportion                | Survived Summ                  | nary       |                 |                   |                  |                |              |        |                        |                                         |                  |                   |
| C-%                          | Control Type                   | Count      | Mean            | 95% LCL           | 95% UCL          | Min            | Max          |        | Std Err                | Std Dev                                 | CV%              | %Effect           |
| 0                            | Lab Seawater                   | 4          | 1               | 1                 | 1                | 1              | 1            |        | 0                      | 0                                       | 0.0%             | 0.0%              |
| 0                            | Receiving Water                |            | 1               | 1                 | 1                | 1              | 1            |        | 0                      | 0                                       | 0.0%             | 0.0%              |
| 6.25                         |                                | 4          | 1               | 1                 | 1                | 1              | 1            |        | 0                      | 0                                       | 0.0%             | 0.0%              |
| 12.5                         |                                | 4          | 0.975           | 0.8954            | 1                | 0.9            | 1            |        | 0.025                  | 0.05                                    | 5.13%            | 2.5%              |
| 25<br>50                     |                                | 4          | 0.975           | 0.8954            | 1                | 0.9            | 1            |        | 0.025                  | 0.05                                    | 5.13%            | 2.5%              |
| 100                          |                                | 4<br>4     | 1<br>0.95       | 1<br>0.8581       | 1<br>1           | 1<br>0.9       | 1<br>1       |        | 0<br>0.02887           | 0<br>0.05774                            | 0.0%<br>6.08%    | 0.0%              |
| <u> </u>                     |                                |            | 0.95            | 0.0001            | 1                | 0.9            | ı            |        | 0.02007                | 0.05774                                 | 0.06%            | 5.0%              |
| i                            | mass-mg Summ                   |            |                 |                   |                  |                |              |        | <b>.</b>               | <b>_</b>                                |                  |                   |
| C-%                          | Control Type                   | Count      |                 | 95% LCL           |                  | Min            | Max          |        | Std Err                | Std Dev                                 | CV%              | %Effect           |
| 0                            | Lab Seawater                   | 4          | 0.914           |                   | 1.071            | 0.773          | 0.983        |        | 0.04911                | 0.09823                                 | 10.74%           | 0.0%              |
| 0                            | Receiving Water                |            | 0.846           | 0.7686            | 0.9234           | 0.792          | 0.90         |        | 0.02431                | 0.04863                                 | 5.75%            | 7.49%             |
| 6.25                         |                                | 4          | 0.8653          |                   | 1                | 0.782          | 0.97         |        | 0.04233                | 0.08467                                 | 9.79%            | 5.39%             |
| 12.5                         |                                | 4          | 0.8902          |                   | 1.075            | 0.721          | 0.969        |        | 0.05806                | 0.1161                                  | 13.04%           | 2.65%             |
| 25                           |                                | 4          | 0.857           | 0.6524            | 1.062            | 0.709          | 1.02         |        | 0.06428                | 0.1286                                  | 15.0%            | 6.29%             |
| 50<br>100                    |                                | 4<br>4     | 0.9485<br>1.036 | 0.7639<br>0.5133  | 1.133<br>1.559   | 0.843<br>0.676 | 1.098        |        | 0.05802<br>0.1643      | 0.116<br>0.3285                         | 12.23%<br>31.71% | -3.72%<br>-13.29% |
|                              | aht ma C                       |            | 1.050           | 0.0100            | 1.003            |                | 1.40         |        | U. 1U4U                | 0.0200                                  | 31./1/0          | -13.23/0          |
| Mean Dry Wei                 | ight-mg Summar<br>Control Type | y<br>Count | Mean            | 0E% I CI          | 05% 1101         | Min            | Max          |        | Ctd Eve                | Std Day                                 | CV9/             | 0/ <b>E</b> #*+   |
| 0                            | Lab Seawater                   | 4          | 0.9145          | 95% LCL<br>0.7582 | 95% UCL<br>1.071 | 0.773          | Max<br>0.983 |        | <b>Std Err</b> 0.04911 | 0.09823                                 | CV%<br>10.74%    | %Effect<br>0.0%   |
| 0                            | Receiving Water                |            | 0.846           | 0.7582            | 0.9234           | 0.773          | 0.98         |        | 0.04911                | 0.09823                                 | 10.74%<br>5.75%  | 0.0%<br>7.49%     |
| 6.25                         | Novelving vvaler               | 4          | 0.8653          |                   | 0.9234           | 0.792          | 0.90         |        | 0.02431                | 0.04663                                 | 9.79%            | 7.49%<br>5.39%    |
| 12.5                         |                                | 4          | 0.915           |                   | 1.124            | 0.721          | 1.009        |        | 0.04255                | 0.03407                                 | 14.34%           | -0.11%            |
| 25                           |                                | 4          | 0.8801          |                   | 1.088            | 0.709          | 1.02         |        | 0.0653                 | 0.1306                                  | 14.84%           | 3.76%             |
| 50                           |                                | 4          | 0.9485          |                   | 1.133            | 0.843          | 1.098        |        | 0.05802                | 0.116                                   | 12.23%           | -3.72%            |
| 100                          |                                | 4          | 1.092           | 0.5608            | 1.624            | 0.676          | 1.437        |        | 0.167                  | 0.3341                                  | 30.58%           | -19.46%           |
|                              |                                |            |                 |                   |                  |                |              |        |                        |                                         |                  |                   |

Report Date: Test Code: 21 Oct-15 13:40 (p 2 of 2) 26494Mb | 08-8998-5788


| Menidia b | eryllina 7-d Larval S | urvival ar | nd Growth 1 | Test . |       | EnviroSystems, Inc. |
|-----------|-----------------------|------------|-------------|--------|-------|---------------------|
| 7d Propor | tion Survived Detail  |            |             |        |       |                     |
| C-%       | Control Type          | Rep 1      | Rep 2       | Rep 3  | Rep 4 |                     |
| 0         | Lab Seawater          | 1          | 1           | 1      | 1     |                     |
| 0         | Receiving Water       | 1          | 1           | 1      | 1     |                     |
| 6.25      | _                     | 1          | 1           | 1      | 1     |                     |
| 12.5      |                       | 1          | 0.9         | 1      | 1     |                     |
| 25        |                       | 0.9        | 1           | 1      | 1     |                     |
| 50        |                       | 1          | 1           | 1      | 1     |                     |
| 100       |                       | 1          | 0.9         | 1      | 0.9   |                     |
| Mean Dry  | Biomass-mg Detail     |            |             |        |       |                     |
| C-%       | Control Type          | Rep 1      | Rep 2       | Rep 3  | Rep 4 |                     |
| 0         | Lab Seawater          | 0.923      | 0.773       | 0.983  | 0.979 |                     |
| 0         | Receiving Water       | 0.825      | 0.905       | 0.862  | 0.792 |                     |
| 6.25      |                       | 0.88       | 0.977       | 0.822  | 0.782 |                     |
| 12.5      |                       | 0.721      | 0.908       | 0.963  | 0.969 |                     |
| 25        |                       | 0.831      | 0.709       | 0.867  | 1.021 |                     |
| 50        |                       | 0.872      | 0.843       | 1.098  | 0.981 |                     |
| 100       |                       | 1.437      | 0.888       | 0.676  | 1.143 |                     |
| Mean Dry  | Weight-mg Detail      |            |             |        |       |                     |
| C-%       | Control Type          | Rep 1      | Rep 2       | Rep 3  | Rep 4 |                     |
| 0         | Lab Seawater          | 0.923      | 0.773       | 0.983  | 0.979 |                     |
| 0         | Receiving Water       | 0.825      | 0.905       | 0.862  | 0.792 |                     |
| 6.25      |                       | 0.88       | 0.977       | 0.822  | 0.782 |                     |
| 12.5      |                       | 0.721      | 1.009       | 0.963  | 0.969 |                     |
| 25        |                       | 0.9233     | 0.709       | 0.867  | 1.021 |                     |
| 50        |                       | 0.872      | 0.843       | 1.098  | 0.981 |                     |
| 100       |                       | 1.437      | 0.9867      | 0.676  | 1.27  |                     |
| 7d Propor | tion Survived Binon   | nials      |             |        |       |                     |
| C-%       | Control Type          | Rep 1      | Rep 2       | Rep 3  | Rep 4 |                     |
| 0         | Lab Seawater          | 10/10      | 10/10       | 10/10  | 10/10 |                     |
| 0         | Receiving Water       | 10/10      | 10/10       | 10/10  | 10/10 |                     |
| 6.25      |                       | 10/10      | 10/10       | 10/10  | 10/10 |                     |
| 12.5      |                       | 10/10      | 9/10        | 10/10  | 10/10 |                     |
| 25        |                       | 9/10       | 10/10       | 10/10  | 10/10 |                     |
| 50        |                       | 10/10      | 10/10       | 10/10  | 10/10 |                     |
| 100       |                       | 10/10      | 9/10        | 10/10  | 9/10  |                     |

Report Date:

21 Oct-15 13:41 (p 1 of 3) 26494Mb | 08-8998-5788

Test Code:

Sample ID: 02-5542-9832 Code: 26494 Client: **ESS Laboratory** Sample Date: 21 Sep-15 08:00 Material: Power Plant Effluent Project: Third Quarter WET Compliance Test Receive Date: 21 Sep-15 14:55 Source: Kendall Green Energy Facility Sample Age: 32h (4 °C) Station: Kendall Green Energy (MA0004898) **Data Transform** Zeta **Trials** Seed **PMSD** NOEL LOEL **TOEL** TU Alt Hyp Angular (Corrected) NA C > T NA NA 6.72% 100 >100 NA 1 Steel Many-One Rank Sum Test Control vs C-% **Test Stat** Critical Ties DF P-Value P-Type Decision(a:5%) Receiving Water 6.25 18 10 1 6 0.8333 Asymp Non-Significant Effect 12.5 16 10 1 6 0.6105 Asymp Non-Significant Effect 25 16 10 1 6 0.6105 Asymp Non-Significant Effect 50 18 10 1 6 0.8333 Asymp Non-Significant Effect 100 14 10 1 6 0.3451 Asymp Non-Significant Effect **ANOVA Table** Source **Sum Squares** Mean Square DF F Stat P-Value Decision(a:5%) 0.02213278 5 1.2 0.3485 Between 0.004426555 Non-Significant Effect Error 0.06639833 0.003688796 18 Total 0.08853111 23 **Distributional Tests Attribute** Test Test Stat Critical P-Value Decision(a:1%) Variances Mod Levene Equality of Variance 2 4.248 0.1274 **Equal Variances** Variances 4.248 Levene Equality of Variance 10.4 < 0.0001 **Unequal Variances** Distribution Shapiro-Wilk W Normality 0.8314 0.884 0.0010 Non-normal Distribution 7d Proportion Survived Summary C-% **Control Type** 95% UCL CV% Count Mean 95% LCL Median Min Max Std Err %Effect 0 1 1 1 Receiving Water 4 1 0 0.0% 0.0% 6.25 1 1 1 1 0 0.0% 0.0% 12.5 4 0.975 0.8954 1 1 0.9 1 0.025 5.13% 2.5% 25 4 0.975 0.8954 1 1 0.9 1 0.025 5.13% 2.5% 50 4 1 1 1 1 0 0.0% 0.0% 100 0.95 0.8581 1 0.95 0.9 1 0.02887 6.08% 5.0% **Angular (Corrected) Transformed Summary** C-% **Control Type** Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect 0 Receiving Wate 4 1.412 1.412 1.412 1.412 1.412 1.412 0 0.0% 0.0% 6.25 1.412 1.412 1.412 1.412 1.412 1.412 0 0.0% 0.0% 12.5 4 1.371 1.242 1.501 1.412 1.249 1.412 0.04074 5.94% 2.89% 25 4 1.371 1.242 1.501 1.412 1.249 1.412 0.04074 5.94% 2.89% 50 4 1.412 1.412 1.412 1.412 1.412 1.412 0.0% 0.0% 100 4 1.331 1.181 1.48 1.331 1.249 1.412 0.04705 7.07% 5.77%



Report Date:

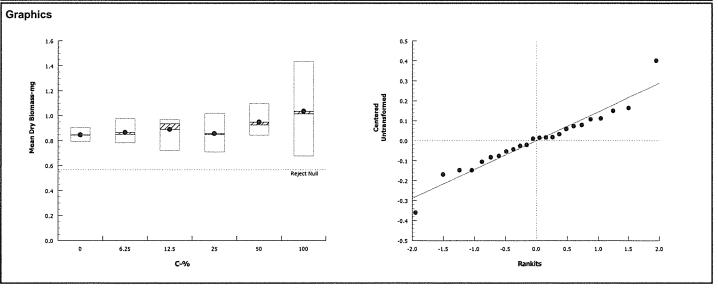
21 Oct-15 13:41 (p 3 of 3) 26494Mb | 08-8998-5788

**Test Code:** 

Sample ID: 02-5542-9832 Code: 26494 Client: **ESS Laboratory** 

Sample Date: 21 Sep-15 08:00 Power Plant Effluent Third Quarter WET Compliance Test Material: Project:

Receive Date: 21 Sep-15 14:55 Source: Kendall Green Energy Facility Sample Age: 32h (4 °C) Kendall Green Energy (MA0004898) Station:


| Data Transform | Zeta | Alt Hyp | Trials | Seed | PMSD  | NOEL | LOEL | TOEL | TU |
|----------------|------|---------|--------|------|-------|------|------|------|----|
| Untransformed  | NA   | C > T   | NA     | NA   | 32.9% | 100  | >100 | NA   | 1  |

| Dunnett Multiple ( | Dunnett Multiple Comparison Test |           |          |       |    |         |        |                        |  |  |  |  |
|--------------------|----------------------------------|-----------|----------|-------|----|---------|--------|------------------------|--|--|--|--|
| Control vs         | C-%                              | Test Stat | Critical | MSD   | DF | P-Value | P-Type | Decision(α:5%)         |  |  |  |  |
| Receiving Water    | 6.25                             | -0.1662   | 2.407    | 0.279 | 6  | 0.8776  | CDF    | Non-Significant Effect |  |  |  |  |
|                    | 12.5                             | -0.3821   | 2.407    | 0.279 | 6  | 0.9215  | CDF    | Non-Significant Effect |  |  |  |  |
|                    | 25                               | -0.09499  | 2.407    | 0.279 | 6  | 0.8598  | CDF    | Non-Significant Effect |  |  |  |  |
|                    | 50                               | -0.8851   | 2.407    | 0.279 | 6  | 0.9766  | CDF    | Non-Significant Effect |  |  |  |  |
|                    | 100                              | -1.641    | 2.407    | 0.279 | 6  | 0.9973  | CDF    | Non-Significant Effect |  |  |  |  |

| ANOVA Table |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                     |         |                        |
|-------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------|---------|------------------------|
| Source      | Sum Squares | Mean Square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DF | F Stat              | P-Value | Decision(α:5%)         |
| Between     | 0.1064308   | 0.02128617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5  | 0.7936              | 0.5681  | Non-Significant Effect |
| Error       | 0.4827744   | 0.0268208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18 |                     |         |                        |
| Total       | 0.5892052   | er Prince March & de March Consider - Leader Prince de Prince de Prince de March Consideration de La Consi | 23 | 0000000 44604-00000 |         |                        |

| Distributional Tests |                               |           |          |         |                     |  |  |  |  |
|----------------------|-------------------------------|-----------|----------|---------|---------------------|--|--|--|--|
| Attribute            | Test                          | Test Stat | Critical | P-Value | Decision(α:1%)      |  |  |  |  |
| Variances            | Bartlett Equality of Variance | 11.2      | 15.09    | 0.0476  | Equal Variances     |  |  |  |  |
| Distribution         | Shapiro-Wilk W Normality      | 0.9536    | 0.884    | 0.3233  | Normal Distribution |  |  |  |  |

| Mean Dry | Mean Dry Biomass-mg Summary |       |        |         |         |        |       |       |         |        |         |
|----------|-----------------------------|-------|--------|---------|---------|--------|-------|-------|---------|--------|---------|
| C-%      | Control Type                | Count | Mean   | 95% LCL | 95% UCL | Median | Min   | Max   | Std Err | CV%    | %Effect |
| 0        | Receiving Water             | 4     | 0.846  | 0.7686  | 0.9234  | 0.8435 | 0.792 | 0.905 | 0.02431 | 5.75%  | 0.0%    |
| 6.25     |                             | 4     | 0.8653 | 0.7305  | 1       | 0.851  | 0.782 | 0.977 | 0.04233 | 9.79%  | -2.28%  |
| 12.5     |                             | 4     | 0.8902 | 0.7055  | 1.075   | 0.9355 | 0.721 | 0.969 | 0.05806 | 13.04% | -5.23%  |
| 25       |                             | 4     | 0.857  | 0.6524  | 1.062   | 0.849  | 0.709 | 1.021 | 0.06428 | 15.0%  | -1.3%   |
| 50       |                             | 4     | 0.9485 | 0.7639  | 1.133   | 0.9265 | 0.843 | 1.098 | 0.05802 | 12.23% | -12.12% |
| 100      |                             | 4     | 1.036  | 0.5133  | 1.559   | 1.016  | 0.676 | 1.437 | 0.1643  | 31.71% | -22.46% |



Report Date:

21 Oct-15 13:42 (p 1 of 1) 26494Mb | 08-8998-5788

**Test Code:** 

Sample ID: 02-5542-9832 26494 Client: **ESS Laboratory** Code: Project: Third Quarter WET Compliance Test

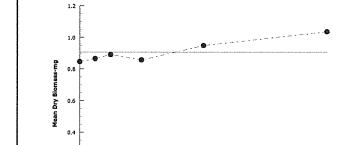
Sample Date: 21 Sep-15 08:00 Material: Power Plant Effluent Receive Date: 21 Sep-15 14:55

Source: Kendall Green Energy Facility Sample Age: 32h (4 °C) Station: Kendall Green Energy (MA0004898)

**Linear Interpolation Options** 

X Transform Y Transform Seed Resamples Exp 95% CL Method Log(X+1) Linear 634199 200 Yes Two-Point Interpolation

**Point Estimates** 


Graphics

0.2

20

Level % 95% LCL 95% UCL TU 95% LCL 95% UCL IC25 >100 <1 N/A N/A NA NΑ

| Mean Dry | Biomass-mg Summ | Calculated Variate |        |       |       |         |         |        |         |
|----------|-----------------|--------------------|--------|-------|-------|---------|---------|--------|---------|
| C-%      | Control Type    | Count              | Mean   | Min   | Max   | Std Err | Std Dev | CV%    | %Effect |
| 0        | Receiving Water | 4                  | 0.846  | 0.792 | 0.905 | 0.02431 | 0.04863 | 5.75%  | 0.0%    |
| 6.25     |                 | 4                  | 0.8653 | 0.782 | 0.977 | 0.04233 | 0.08467 | 9.79%  | -2.28%  |
| 12.5     |                 | 4                  | 0.8902 | 0.721 | 0.969 | 0.05806 | 0.1161  | 13.04% | -5.23%  |
| 25       |                 | 4                  | 0.857  | 0.709 | 1.021 | 0.06428 | 0.1286  | 15.0%  | -1.3%   |
| 50       |                 | 4                  | 0.9485 | 0.843 | 1.098 | 0.05802 | 0.116   | 12.23% | -12.12% |
| 100      |                 | 4                  | 1.036  | 0.676 | 1.437 | 0.1643  | 0.3285  | 31.71% | -22.46% |



# 1300 Blue Spruce Drive, Suite C Fort Collins, Colorado 80524

DATE: 9/21/2015



Toll Free: 800/331-5916 Tel: 970/484-5091 Fax:970/484-2514

Lot #: OTMLABS092215

# ORGANISM HISTORY

|                         |                      | •                    |              |
|-------------------------|----------------------|----------------------|--------------|
| SPECIES:                | Λ:                   | lenidia beryllina    |              |
| AGE: _                  | 9                    | day                  | ·····        |
| LIFE STAGE:             | J <u>ı</u>           | uvenile              | ·            |
| HATCH DATE:             | 9/                   | /12/2015             |              |
| BEGAN FEEDING:          | In                   | nmediately           |              |
| FOOD:                   | R                    | otifers, Artemia sp. |              |
| Water Chemistry Record: |                      | Current              | Range        |
| TEMPER                  | ATURE:               | 26°C                 | 23-26 ℃      |
| · SALINITY/CONDUC       | TIVITY:              | 25 ppt               | 23-26 ppt    |
| TOTAL HARDNESS (as      | CaCO <sub>3</sub> ): |                      | MIN.         |
| TOTAL ALKALINITY (as    | CaCO <sub>3</sub> ): | 155 mg/l             | 150-210 mg/l |
|                         | pH:                  | 8.08                 | 7.56-8.21    |
| Comments:               |                      | 5-11                 | ?            |
| <del></del>             |                      | Facility Supervisor  |              |

|                      | A                                                                  | rbacia p | unctula                                  | ata Chronic F                               | ertilizati    | on Ass           | ау                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------|--------------------------------------------------------------------|----------|------------------------------------------|---------------------------------------------|---------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STUDY:<br>26633      | CLIENT:<br>ESS Labora<br>icendall                                  |          |                                          | E/DILUENT: ET<br>ENT/RECEIVING<br>3011+ Lab |               | DATE:            | 10/11/15<br>S: M    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SALINITY A           | DJUSTMENT I                                                        | RECORD:  | 1600 n                                   | ml EFFLUENT +                               | 34 g SAL      | T = 100          | % ACTUAL PE         | ERCENTAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SALINITY A           | DJUSTMENT I                                                        | RECORD:  | )000 r                                   | nl DILUENT + 3≀                             | d g SALT:     | = 100%           | ACTUAL PER          | CENTAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      | EFFLUENT D.O. CONCENTRATION) (mg/L)                                |          |                                          | pH<br>(SU)                                  | TEMPER<br>(°C |                  | SALINITY<br>(ppt)   | TRC<br>(mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | CEIVED"<br>UENT                                                    | 8.0      | >                                        | 7.23                                        | 23            |                  | 0,9                 | 40.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | CEIVED"<br>ng Water                                                | 8.8      |                                          | 7.47                                        | 23            |                  | 0.8                 | Lo.0Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LAE                  | 3 SALT                                                             | 7.1      |                                          | 8.07                                        | 20            |                  | 31                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RECEIVIN             | IG WATER                                                           | 8.2      |                                          | 8.26                                        | 20            |                  | 30                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.2                  | 25%                                                                | 7.2      |                                          | 8.09                                        | Z0            |                  | 3(                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12.                  | .5%                                                                | 7.2      | ······································   | 8.69                                        | 20            |                  | 30                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | 5%                                                                 | 7,2      |                                          | 8.09                                        | ZC            | <u> </u>         | 30                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | )%<br>0%                                                           | 7.       |                                          | 8.16                                        | 18            |                  | Z9                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | R TEMP °C:                                                         |          | 1                                        |                                             | , ,           |                  |                     | Company of the Control of the Contro |
|                      | TE:                                                                | 10/16/   | 5                                        |                                             |               |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TIF                  | ME:                                                                | 1435     | -                                        |                                             |               |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| INIT                 | IALS:                                                              | ke       | _                                        |                                             |               |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SPERM DILUT          | IONS:                                                              |          |                                          | <b></b>                                     |               |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | ACYTOMETER                                                         | COUNT    | F: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 22 × 104                                    | = SPN         | / SOLUTI         | ON D = <u>1.2.2</u> | XID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | M CONCENT                                                          |          |                                          | SOLUTION E X SOLUTION E X                   | 40 = SOL      | JTION A :        | = 4.89 X10"         | SPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FINAL COUNT          | <b>'</b> \$:                                                       |          |                                          | SOLUTION E X                                | 5 = SOLU      | JTION C          | = 10.10 X 106       | _SPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | _ SPERM COU<br>_ EGG COUNT                                         |          | 2x106                                    | O                                           | RGANISM       | LOT: <b>41</b> 1 | Ap033115            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EGGS<br>SPER<br>EGGS | RM COLLECTE<br>S COLLECTED<br>RM ADDED:<br>S ADDED:<br>FIVE ADDED: |          | 5                                        |                                             | STATIC        | )N #:            |                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

# Arbacia punctulata Chronic Fertilization Assay

| <b>STUDY:</b> 24433 | CLIENT:<br>ESS Laboratories | SAMPLE/DILUENT:<br>EFFLUENT / RECEI | E3) To The<br>VING WATER<br>Lab Salt | DATE: 河崎5 /<br>いたいら<br>TIME: 1400 /<br>のみのら<br>INITIALS: 仏りEH |  |  |  |  |  |
|---------------------|-----------------------------|-------------------------------------|--------------------------------------|---------------------------------------------------------------|--|--|--|--|--|
|                     | REPLICATE VIAL              |                                     |                                      |                                                               |  |  |  |  |  |
| EFFLUENT<br>CONC.   | 1                           | 2                                   | 3                                    | 4                                                             |  |  |  |  |  |
|                     | UNFERT/TOTAL                | UNFERT/TOTAL                        | UNFERT/TOTAL                         | UNFERT/TOTAL                                                  |  |  |  |  |  |
|                     |                             |                                     |                                      |                                                               |  |  |  |  |  |
| LAB SALT            | 83/106                      | 76/100                              | 64/100                               | 88/100                                                        |  |  |  |  |  |
| RW                  | 67/103                      | 81/100                              | 81/100                               | 80/100                                                        |  |  |  |  |  |
| 6.25%               | 67/105                      | 81/10H                              | 60/104                               | 70/102                                                        |  |  |  |  |  |
| 12.5%               | 60/105                      | 74/101                              | 75/104                               | 59/103                                                        |  |  |  |  |  |
| 25%                 | 73/110                      | 60/106                              | 58/102                               | GHliot                                                        |  |  |  |  |  |
| 50%                 | 76/103                      | 73/100<br>64/107                    | 71/107                               | 78/115                                                        |  |  |  |  |  |
| 100%                | 11/100                      | 8/100                               | 6 1101                               | 11/100                                                        |  |  |  |  |  |

## **CETIS Summary Report**

Report Date: Test Code: 21 Oct-15 13:45 (p 1 of 1) 26633Ap | 17-1093-0722

|               |                      |                          | Test Code. | 20033AP   17-1093-0722 |
|---------------|----------------------|--------------------------|------------|------------------------|
| Arbacia Speri | m Cell Fertilization | on Test                  |            | EnviroSystems, Inc.    |
| Batch ID:     | 04-4164-1237         | Test Type: Fertilization | Analyst:   |                        |

Batch ID:04-4164-1237Test Type:FertilizationAnalyst:Start Date:16 Oct-15 14:35Protocol:EPA/821/R-02-014 (2002)Diluent:Laboratory SeawaterEnding Date:16 Oct-15 15:55Species:Arbacia punctulataBrine:Generic commercial salts

 Duration:
 80m
 Source:
 In-House Culture
 Age:

Sample ID: 15-4818-4362 Code: 26633 Client: ESS Laboratory

Sample Date: 16 Oct-15 11:45Material:Power Plant EffluentProject:Third Quarter WET Compliance TestReceipt Date: 16 Oct-15 13:15Source:Kendall Green Energy Facility

Sample Age: 3h (2 °C)

Station: Kendall Green Energy (MA0004898)

#### **Multiple Comparison Summary** Analysis ID **Endpoint Comparison Method NOEL** LOEL TOEL TU **PMSD** 14-8103-8226 Proportion Fertilized **Dunnett Multiple Comparison Test** 12.5 25 17.68 8 15.1% 17-5597-8626 Proportion Fertilized **Dunnett Multiple Comparison Test** 12.5 25 17.68 8 15.1% 🗸

| Point Estimat | te Summary            |                              |       |      |         |         |         |
|---------------|-----------------------|------------------------------|-------|------|---------|---------|---------|
| Analysis ID   | Endpoint              | Point Estimate Method        | Level | %    | 95% LCL | 95% UCL | TU      |
| 10-4335-0249  | Proportion Fertilized | Linear Interpolation (ICPIN) | EC25  | 55.1 | 47.2    | 62.9    | 1.815 🗸 |
| 12-6894-6112  | Proportion Fertilized | Linear Interpolation (ICPIN) | EC25  | 55.1 | 47.9    | 62.5    | 1.815 🗸 |

| Test Acceptal | bility                |              |           | TAC L | imits. |         |                               |
|---------------|-----------------------|--------------|-----------|-------|--------|---------|-------------------------------|
| Analysis ID   | Endpoint              | Attribute    | Test Stat | Lower | Upper  | Overlap | Decision                      |
| 10-4335-0249  | Proportion Fertilized | Control Resp | 0.766     | 0.7   | 1      | Yes     | Passes Acceptibility Criteria |
| 12-6894-6112  | Proportion Fertilized | Control Resp | 0.766     | 0.7   | 1      | Yes     | Passes Acceptibility Criteria |
| 14-8103-8226  | Proportion Fertilized | Control Resp | 0.766     | 0.7   | 1      | Yes     | Passes Acceptibility Criteria |
| 17-5597-8626  | Proportion Fertilized | Control Resp | 0.766     | 0.7   | 1      | Yes     | Passes Acceptibility Criteria |
| 14-8103-8226  | Proportion Fertilized | PMSD         | 0.151     | 0     | 0.25   | Yes     | Passes Acceptibility Criteria |
| 17-5597-8626  | Proportion Fertilized | PMSD         | 0.151     | 0     | 0.25   | Yes     | Passes Acceptibility Criteria |

| Proportion Fertilized Summary |      |       |       |         |         |       |       |         |         |        |         |
|-------------------------------|------|-------|-------|---------|---------|-------|-------|---------|---------|--------|---------|
| Conc-%                        | Code | Count | Mean  | 95% LCL | 95% UCL | Min   | Max   | Std Err | Std Dev | CV%    | %Effect |
| 0                             | LS   | 4     | 0.766 | 0.609   | 0.923   | 0.640 | 0.880 | 0.049   | 0.099   | 12.88% | 0.00%   |
| 0                             | RW   | 4     | 0.816 | 0.785   | 0.847   | 0.800 | 0.845 | 0.010   | 0.020   | 2.40%  | -6.58%  |
| 6.25                          |      | 4     | 0.670 | 0.534   | 0.806   | 0.577 | 0.779 | 0.043   | 0.085   | 12.72% | 12.50%  |
| 12.5                          |      | 4     | 0.650 | 0.507   | 0.792   | 0.571 | 0.733 | 0.045   | 0.090   | 13.78% | 15.18%  |
| 25                            |      | 4     | 0.608 | 0.531   | 0.685   | 0.566 | 0.664 | 0.024   | 0.049   | 7.98%  | 20.60%  |
| 50                            |      | 4     | 0.702 | 0.644   | 0.761   | 0.664 | 0.738 | 0.019   | 0.037   | 5.27%  | 8.27%   |
| 100                           |      | 4     | 0.090 | 0.051   | 0.129   | 0.059 | 0.110 | 0.012   | 0.025   | 27.53% | 88.27%  |

| Proportion Fertilized Detail |      |       |       |       |       |  |  |
|------------------------------|------|-------|-------|-------|-------|--|--|
| Conc-%                       | Code | Rep 1 | Rep 2 | Rep 3 | Rep 4 |  |  |
| 0                            | LS   | 0.783 | 0.760 | 0.640 | 0.880 |  |  |
| 0                            | RW   | 0.845 | 0.810 | 0.810 | 0.800 |  |  |
| 6.25                         |      | 0.638 | 0.779 | 0.577 | 0.686 |  |  |
| 12.5                         |      | 0.571 | 0.733 | 0.721 | 0.573 |  |  |
| 25                           |      | 0.664 | 0.566 | 0.569 | 0.634 |  |  |
| 50                           |      | 0.738 | 0.730 | 0.664 | 0.678 |  |  |
| 100                          |      | 0.110 | 0.080 | 0.059 | 0.110 |  |  |

Report Date: **Test Code:** 

21 Oct-15 13:45 (p 1 of 4) 26633Ap | 17-1093-0722

Arbacia Sperm Cell Fertilization Test EnviroSystems, Inc. Analysis ID: 17-5597-8626 **Endpoint:** Proportion Fertilized **CETIS Version: CETISv1.8.6** 20 Oct-15 11:05 Parametric-Control vs Treatments Analyzed: Analysis: Official Results: Yes Sample ID: 15-4818-4362 Code: 26633 Client: **ESS Laboratory** Sample Date: 16 Oct-15 11:45 Material: Power Plant Effluent Project: Third Quarter WET Compliance Test Receipt Date: 16 Oct-15 13:15 Source: Kendall Green Energy Facility Sample Age: 3h (2 °C) Station: Kendall Green Energy (MA0004898) Alt Hyp **Data Transform** Trials Seed TST<sub>b</sub> NOEL LOEL TOEL TU **PMSD** Angular (Corrected) C > T n/a 12.5 n/a n/a 25 17.68 8 15.1% **Dunnett Multiple Comparison Test** Control Conc-% **Test Stat** Critical MSD DF P-Type P-Value Decision(a:5%) Lab Seawater 6.25 1.98 2.41 0.135 6 CDF 0.1077 Non-Significant Effect 12.5 2.37 2.41 0.135 6 CDF 0.0533 Non-Significant Effect 25\* 3.17 2.41 0.135 6 CDF 0.0108 Significant Effect 50 1.39 2.41 0.135 6 CDF 0.2643 Non-Significant Effect 100\* 13.7 2.41 0.135 6 CDF 2.7E-05 Significant Effect **ANOVA Table** Source **Sum Squares** Mean Square DF F Stat P-Value Decision(a:5%) Between 1.56788 0.313575 5 49.9 <1.0E-37 Significant Effect Error 0.113031 0.00628 18 Total 1.68091 23 **Distributional Tests** Attribute Test Test Stat Critical P-Value Decision(a:1%) Equal Variances Variances **Bartlett Equality of Variance Test** 5.19 15.1 0.3933 Distribution Shapiro-Wilk W Normality Test 0.989 0.884 0.9932 Normal Distribution **Proportion Fertilized Summary** Conc-% Code Count Mean 95% LCL 95% UCL Median Min CV% Max Std Err %Effect 0 LS 4 0.766 0.609 0.923 0.772 0.640 0.880 0.049 12.88% 0.00% 6.25 4 0.670 0.534 0.806 0.662 0.577 0.779 12.72% 0.043 12.50% 12.5 4 0.650 0.507 0.792 0.647 0.571 0.733 0.045 13.78% 15.18% 25 4 0.608 0.531 0.685 0.601 0.566 0.664 0.024 7.98% 20.60% 50 4 0.702 0.644 0.761 0.704 0.738 0.019 0.6645.27% 8.27% 100 4 0.090 0.051 0.129 0.095 0.059 0.110 0.012 27.53% 88.27% Angular (Corrected) Transformed Summary Conc-% Code Count Mean 95% LCL 95% UCL Median Min Max Std Err CV% %Effect LS 4 0 1.07 0.883 1.26 1.07 0.927 1.22 0.0594 11.08% 0.00% 6.25 4 0.814 0.961 1.11 0.951 0.863 1.08 0.0462 9.61% 10.35% 12.5 4 0.939 0.789 1.09 0.936 0.857 1.03 0.0472 10.04% 12.40% 25 4 0.815 0.895 0.974 0.887 0.852 0.952 0.0249 5.58% 16.57% 50 4 0.994 0.93 1.06 0.996 0.952 1.03 0.0203 4.07% 7.27% 4 100

14.73%

71.81%

0.373

0.312

0.246

0.338

0.0223

0.302

0.231

Report Date: Test Code: 21 Oct-15 13:45 (p 2 of 4) 26633Ap | 17-1093-0722

**Arbacia Sperm Cell Fertilization Test** EnviroSystems, Inc. Analysis ID: 17-5597-8626 Endpoint: Proportion Fertilized CETISv1.8.6 **CETIS Version:** Analyzed: 20 Oct-15 11:05 Analysis: Parametric-Control vs Treatments Official Results: Yes Graphics 6.25 12.5

Report Date:

21 Oct-15 13:45 (p 1 of 2)

**Test Code:** 

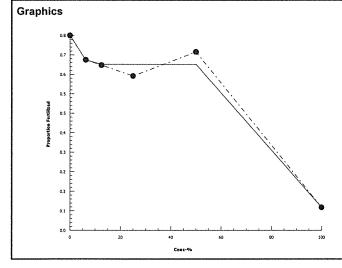
26633Ap | 17-1093-0722

| Arbacia Speri | m Cell Fertilization | Test                            | EnviroSystems, Inc.        |
|---------------|----------------------|---------------------------------|----------------------------|
| Analysis ID:  | 12 6904 6112         | Endnoint: Proportion Fertilized | CETIS Varsian: CETISv1 8 6 |

Analyzed: 20 Oct-15 11:05 Analysis: Linear Interpolation (ICPIN) Official Results: Yes

Sample ID:15-4818-4362Code:26633Client:ESS LaboratorySample Date:16 Oct-15 11:45Material:Power Plant EffluentProject:Third Quarter WET Compliance Test

Receipt Date: 16 Oct-15 13:15 Source: Kendall Green Energy Facility
Sample Age: 3h (2 °C) Station: Kendall Green Energy (MA0004898)


Linear Interpolation Options

| •           | •           |         |           |            |                         |
|-------------|-------------|---------|-----------|------------|-------------------------|
| X Transform | Y Transform | Seed    | Resamples | Exp 95% CL | Method                  |
| Log(X+1)    | Linear      | 1338279 | 200       | Yes        | Two-Point Interpolation |

**Point Estimates** 

| Level | %    | 95% LCL | 95% UCL | TU    | 95% LCL | 95% UCL |
|-------|------|---------|---------|-------|---------|---------|
| EC25  | 55.1 | 47.9    | 62.5    | 1.815 | 1.601   | 2.086   |

| Proportion Fe | ertilized Summ | ary   | Calculated Variate(A/B) |       |       |         |         |        |         |     |     |
|---------------|----------------|-------|-------------------------|-------|-------|---------|---------|--------|---------|-----|-----|
| Conc-%        | Code           | Count | Mean                    | Min   | Max   | Std Err | Std Dev | CV%    | %Effect | Α   | В   |
| 0             | LS             | 4     | 0.766                   | 0.640 | 0.880 | 0.049   | 0.099   | 12.88% | 0.00%   | 311 | 406 |
| 6.25          |                | 4     | 0.670                   | 0.577 | 0.779 | 0.043   | 0.085   | 12.72% | 12.50%  | 278 | 415 |
| 12.5          |                | 4     | 0.650                   | 0.571 | 0.733 | 0.045   | 0.090   | 13.78% | 15.18%  | 268 | 413 |
| 25            |                | 4     | 0.608                   | 0.566 | 0.664 | 0.024   | 0.049   | 7.98%  | 20.60%  | 254 | 419 |
| 50            |                | 4     | 0.702                   | 0.664 | 0.738 | 0.019   | 0.037   | 5.27%  | 8.27%   | 298 | 425 |
| 100           |                | 4     | 0.090                   | 0.059 | 0.110 | 0.012   | 0.025   | 27.53% | 88.27%  | 36  | 401 |



M. beryllina 7 Day Chronic Assay

| STUDY: 26494 |       | CLIENT: ESS Laboratories | SAMPLE: EFFLUENT                       | DILUENT: RECEIVING WATER (RW) |                                 |  |
|--------------|-------|--------------------------|----------------------------------------|-------------------------------|---------------------------------|--|
|              | DAY 0 | (START)                  | DAY <sup>て</sup> (1 <sup>st</sup> RENE | EWAL)                         | DAY 4 (2 <sup>ND</sup> RENEWAL) |  |
| DATE:        |       | 09/21/15                 | DATE: 9/24/15                          |                               | DATE: 9/210/15                  |  |

CHEMISTRIES SAMPLED

| CHEMISTRY | START<br>EFFLUENT | START<br>DILUENT | 1 <sup>st</sup><br>EFFLUENT | 1 <sup>st</sup><br>DILUENT | 2 <sup>ND</sup><br>EFFLUENT | 2 <sup>ND</sup><br>DILUENT |
|-----------|-------------------|------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|
| AMM       |                   |                  |                             |                            |                             |                            |
| TS/TSS    |                   |                  |                             |                            |                             |                            |
| TOC       |                   |                  |                             |                            |                             |                            |
| METALS    |                   |                  |                             |                            |                             |                            |

AS RECEIVED & SALINITY ADJUSTED WATER QUALITIES

|                |          |         | HITT ADOUGLE | 2 11111111 4011 |          |         |
|----------------|----------|---------|--------------|-----------------|----------|---------|
| AS REC'D       | EFFLUENT | DILUENT | EFFLUENT     | DILUENT         | EFFLUENT | DILUENT |
| SALINITY (ppt) | 1.3      | 1,3     | 1.4          | 1.5             | 1.6      | 1.5     |
| pH (SU)        | 7.67     | 8.49    | 7.63         | 8.60            | 739      | 7.13    |
| TRC (mg/L)     | 40.02    | 40.02   | 10.02        | 40.02           | LOIGE    | 0,051   |
| SAL. ADJ.      | EFFLUENT | DILUENT | EFFLUENT     | DILUENT         | EFFLUENT | DILUENT |
| SALINITY (ppt) | 24       | 25      | 25           | 74              | 20       | 25      |
| pH (SU)        | 0.00     | 0 00    | 0.0          | 4               |          | -       |
| pri (60)       | 6.20     | 6.33    | 8.19         | 827             | 8.13     | 8.19    |

SALINITY ADJUSTMENT RECORD

|                      | CALIMITY ADOCOTMENT RECORD |                  |                             |                            |                             |                            |
|----------------------|----------------------------|------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|
|                      | START<br>EFFLUENT          | START<br>DILUENT | 1 <sup>st</sup><br>EFFLUENT | 1 <sup>st</sup><br>DILUENT | 2 <sup>ND</sup><br>EFFLUENT | 2 <sup>ND</sup><br>DILUENT |
| SAMPLE mLs           | 12000 good                 | 8-12000          | 8000                        | 16000                      | 12,000                      | 10,000                     |
| SEA SALT g<br>(A - ) | <del>328</del> 218         | 328              | 217.5                       | 433.Z                      | 373                         | 541                        |
| TOTAL mLs            | 12000 <sub>8000</sub>      | 12000            | 9නවි                        | 16000                      | v2,∞0                       | 20,000                     |
| ACTUAL %             | 100%                       | 100%             | 100%                        | 1007.                      | 100%                        | 100%                       |
| DATE:                | 09/21/15                   | 09/21/15         | 9/23/15                     | 9/23/15                    | 9/25/18                     | 9/25/18                    |
| TIME:                | 1510                       | 1515             | 1525                        | 1525                       | 1320                        | 1340)                      |
| INITIALS:            | EH                         | EM               | NP                          | NP                         | BL                          | Bi                         |

| OF THE | িন্ে<br>Did 1 <sup>st</sup> Renewal sample cause ≥50% mortaility? Yes <u>No</u><br>If "YES" pull TS,TSS,& put into circulation TOC and METALS bottles. | <u> </u> |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|        | man and —                                                                                                                                              | V        |

Did 2<sup>nd</sup> Renewal sample cause ≥50% mortaility? Yes \_\_\_\_\_\_ No\_\_\_\_\_

#### FRESHWATER CHRONIC ASSAY - NEW WATER QUALITIES

| STUDY                                | (:Z6        | 494                                                      | CLIE                                   | NT: E                                          | SS Lab                           | oratori                                        | es                                     |                                        |                            |                            |                                  | DILU<br>Wate               | ENT: F                     | Receivir                   | ng                         |              |
|--------------------------------------|-------------|----------------------------------------------------------|----------------------------------------|------------------------------------------------|----------------------------------|------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------|----------------------------|----------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--------------|
| ****                                 | TO SHARE    | NEW                                                      | DISSOL                                 | _VED OX                                        | (YGEN (                          | mg/L)                                          |                                        |                                        | <b>(36)</b>                | Janes-                     | NE                               | EW pH (                    | SU)                        |                            |                            |              |
| CONC                                 | REP         | 0                                                        | 1                                      | 2                                              | 3                                | 59 NP 120                                      | <del></del>                            | 6                                      | 0                          | 1                          | 2                                | 3                          | 4                          | 5                          | 6                          |              |
| LAB                                  | Α           | 8.8                                                      | 6.6                                    | 7.4                                            | 7. 2                             | \$7.3                                          | 7.6                                    | 7,2 g                                  | 8.10                       | 7.97                       | 8.00                             | 7.97                       | 7.97                       | 8.01                       | 8.07                       |              |
| RW                                   | А           | 8.7                                                      | 6.7                                    | 7.4                                            | 7.2                              | 7.2                                            | 7.4                                    | 7.0                                    | 8,33                       | 8.25                       | 8.27                             | B. Z2                      | 8.19                       | 1                          | 8.16                       |              |
| 6.25%                                | Α           | 8.7                                                      | 6.6                                    | 7.8                                            | 7.3                              | 7.9                                            | 7.5                                    | 6.9                                    | 834                        | 8.27                       |                                  |                            | 8.19                       |                            | 8.17                       |              |
| 12.5%                                | Α           | 8.7                                                      | 6.7                                    | 7.3                                            | 7.0                              | 7.0                                            | 7.4                                    | 69                                     | 8.29                       | 8.27                       | 8.29                             |                            | 8.19                       |                            | 8.17                       |              |
| 25%                                  | Α           | 9.0                                                      | 6.4                                    | 7.3                                            | 6.9                              | 6.9                                            | 7.4                                    | 6,9                                    | 8.20                       | 8,24                       | 8,78                             |                            |                            |                            | 8.15                       |              |
| 50%                                  | Α           | 9.0                                                      | 6.4                                    | 7.2                                            | 7.0                              | 7.1                                            | 7.3                                    | 6,9                                    | 8.263                      | 8,20                       | ઉ.૨5                             | 8.24                       | 8.17                       | 8.18                       | \$13                       | OP122<br>OEH |
| 100%                                 | Α           | 8,7                                                      | 6.3                                    | 7. 2                                           | 6.9                              | 7.3                                            | 7.2                                    | 6.9                                    | 05,0                       | 8.16                       | 8.19                             | 8.16                       | 8.13                       | 8.12                       | 8.09                       |              |
|                                      |             |                                                          | SAL                                    | .INITY (P                                      | PT)                              |                                                |                                        |                                        |                            | N                          | IEW TEN                          | //PERAT                    | URE (°0                    | C)                         |                            |              |
| CONC                                 | REP         | 0                                                        | 1                                      | 2                                              | 3                                | 4                                              | 5                                      | 6                                      | 0                          | 1                          | 2                                | 3                          | 4                          | 5                          | 6                          |              |
| LAB                                  | Α           | 20                                                       | 26                                     | 24                                             | 25                               | 75                                             | 24                                     | 23                                     | 0.0                        | 22                         | 22                               | 22                         |                            |                            |                            |              |
|                                      |             | 20                                                       | 100                                    |                                                |                                  | 0.5                                            | 147                                    | -                                      | 22                         | 166                        | 20                               |                            | 21                         | 20                         | 23                         |              |
| RW                                   | Α           | 25                                                       | 25                                     | 24                                             | 24                               | 25                                             | 15                                     | 25                                     | 7 <u>7</u> 24              | 21                         | 24                               | 24                         | 21<br>24                   | 20                         | <u>23</u><br>23            |              |
| RW<br>6.25%                          | A<br>A      |                                                          |                                        | Z4<br>Z4                                       |                                  |                                                |                                        |                                        |                            |                            |                                  |                            | · · · · ·                  |                            | 23                         |              |
|                                      |             | 25                                                       | 25                                     |                                                | Z4                               | 25                                             | 15                                     | 25                                     | 24                         | 21                         | Z4                               | 24                         | 24                         | 21                         | 23<br>23                   | ·            |
| 6.25%                                | Α           | 25<br>25                                                 | 25<br>25                               | 24                                             | Z4<br>Z4                         | 75<br>26                                       | 25<br>25                               | 25<br>25                               | 24<br>24                   | 21<br>22                   | Z4<br>Z4                         | 24<br>24                   | Z4<br>Z3                   | 21                         | 23                         | ·            |
| 6.25%                                | A           | 25<br>25<br>24                                           | 25<br>25<br>25                         | 24<br>25                                       | 24<br>24<br>24                   | 75<br>76<br>25                                 | 25<br>25<br>25                         | 25<br>25<br>25                         | 24<br>24<br>23             | 21<br>22<br>22             | 24<br>24<br>24                   | 24<br>24<br>24             | 24<br>23<br>24             | 21<br>21<br>21             | 23<br>23<br>23             | ·            |
| 6.25%<br>12.5%<br>25%                | A<br>A      | 25<br>25<br>24<br>25<br>24                               | 25<br>25<br>25<br>25                   | 24<br>25<br>25                                 | 24<br>24<br>29<br>24<br>24       | 25<br>26<br>25<br>25                           | 15<br>15<br>15<br>15                   | 25<br>25<br>25<br>25                   | 24<br>24<br>23<br>23       | 21<br>22<br>22<br>22       | 24<br>24<br>24<br>24             | 29<br>29<br>29<br>29<br>25 | 24<br>23<br>24<br>23       | 21<br>21<br>21<br>21       | 23<br>23<br>23<br>24       | ·            |
| 6.25%<br>12.5%<br>25%<br>50%         | A<br>A<br>A | 25<br>25<br>24<br>25<br>24<br>25<br>25                   | 25<br>25<br>25<br>25<br>25             | 24<br>25<br>25<br>25                           | 24<br>29<br>29<br>24<br>24       | 25<br>26<br>25<br>25<br>25                     | 15<br>15<br>15<br>15<br>25<br>25       | 25<br>25<br>25<br>25<br>26             | 24<br>24<br>23<br>23<br>22 | 21<br>22<br>22<br>22<br>22 | 24<br>24<br>24<br>24<br>24<br>24 | 24<br>24<br>24<br>25<br>25 | 24<br>23<br>24<br>23<br>22 | 21<br>21<br>21<br>21<br>21 | 23<br>23<br>23<br>24<br>24 | ·            |
| 6.25%<br>12.5%<br>25%<br>50%<br>100% | A A A       | 25<br>25<br>24<br>25<br>25<br>25<br>25<br>24             | 25<br>25<br>25<br>25<br>25<br>25       | 24<br>25<br>25<br>25<br>25<br>25<br>25         | 24<br>24<br>24<br>24<br>24<br>25 | 25<br>26<br>25<br>25<br>25<br>26<br>25         | 15<br>15<br>15<br>15<br>15<br>10<br>25 | 25<br>25<br>25<br>25<br>26<br>26       | 24<br>24<br>23<br>23<br>22 | 21<br>22<br>22<br>22<br>22 | 24<br>24<br>24<br>24<br>24<br>24 | 24<br>24<br>24<br>25<br>25 | 24<br>23<br>24<br>23<br>22 | 21<br>21<br>21<br>21<br>21 | 23<br>23<br>23<br>24<br>24 | ·            |
| 6.25% 12.5% 25% 50% 100% INC TEMP    | A A A       | 25<br>25<br>24<br>25<br>25<br>25<br>24<br>25<br>24<br>25 | 25<br>25<br>25<br>25<br>25<br>25<br>25 | 24<br>25<br>25<br>25<br>25<br>25<br>25<br>9/24 | 24<br>24<br>24<br>24<br>24<br>25 | 25<br>26<br>25<br>25<br>25<br>26<br>25<br>9126 | 15<br>15<br>15<br>15<br>15<br>10<br>25 | 25<br>25<br>25<br>25<br>26<br>26<br>26 | 24<br>24<br>23<br>23<br>22 | 21<br>22<br>22<br>22<br>22 | 24<br>24<br>24<br>24<br>24<br>24 | 24<br>24<br>24<br>25<br>25 | 24<br>23<br>24<br>23<br>22 | 21<br>21<br>21<br>21<br>21 | 23<br>23<br>23<br>24<br>24 |              |

| DAY 0<br>(START) |         |     |     |      |     |        | DAY<br>(1 <sup>st</sup> RE | ر<br>NEWAL) |      |     | DAY<br>(2 <sup>ND</sup> RE | 4<br>NEWAL) |      |     |       |
|------------------|---------|-----|-----|------|-----|--------|----------------------------|-------------|------|-----|----------------------------|-------------|------|-----|-------|
|                  | METALS  | TOC | ALK | HARD | AMM | TS/TDS | TRC                        | ALK         | HARD | AMM | TRC                        | ALK         | HARD | AMM | TRC   |
| EFF              | 50.00 S |     |     |      |     |        | 40.02                      |             |      |     | 40.02                      |             |      |     | 40.02 |
| RW               |         |     |     |      |     |        | 10.02                      |             |      |     | 40.02                      |             |      |     | (0.02 |

| Did 1 <sup>st</sup> Renewal sample cause ≥50% mortaility?  If "YES" put into circulation TOC and METALS be | Yes<br>bottles. | No <u> </u> |
|------------------------------------------------------------------------------------------------------------|-----------------|-------------|
| Did 2 <sup>nd</sup> Renewal sample cause ≥50% mortaility?  If "YES" put into circulation TOC and METALS b  | Yes             | No 🛨        |

## M. Beryllina CHRONIC ASSAY - OLD WATER QUALITIES

| STUDY: 26494 CLIENT: ESS Laboratories SAMPL |               |                 |                     |            |        |                 |       |      | PLE: E | Effluent |      | DILU  | ENT: F | ₹W   |      |
|---------------------------------------------|---------------|-----------------|---------------------|------------|--------|-----------------|-------|------|--------|----------|------|-------|--------|------|------|
|                                             |               | OLE             | ) Temp              | oeratur    | e (°C) | Salayan Salasan |       |      |        |          | Ol   | LD pH | (SU)   |      |      |
| CONC                                        | REP           | 1               | 2                   | 3          | 4      | 5               | 6     | 7    | 1      | 2        | 3    | 4     | 5      | 6    | 7    |
| LAB                                         | А             | 24              | 23                  | 23         | 23     | 21              | 24    | 24   | 7.99   | 7.90     | 7.69 | 7.74  | 7.81   | 7.77 | 7.89 |
| RW                                          | A<br>E3)NP912 | <sup>3</sup> 24 | 23<br><del>25</del> | 23         | 23     | 21              | 24    | 74   | 8.21   | 8.15     | 9.10 | 6.11  | 8.15   | 8.05 | 8.10 |
| 6.25%                                       | Α             | 24              | 23                  | 23         | 23     | 22              | 24    | 74   | 8.22   | 8.18     | 8.11 | 9.10  | 8.13   | 8,03 | 8.09 |
| 12.5%                                       | Α             | 24              | 23                  | 23         | 23     | 22              | 24    | 24   | B. Z3  | 8,23     | 8.12 | 9,09  | 8.10   | 8,07 | 8.11 |
| 25%                                         | Α             | 24              | 23                  | 23         | 13     | 22              | 24    | 24   | 8.19   | 8.18     | 6,12 | 6.09  | 8,10   | 8,04 | 8,00 |
| 50%                                         | Α             | 건네              | 23                  | 23         | 23     | 22              | 24    | 24   |        | 8.15     | 1    | 61.0  | l      | l    | 8.06 |
| 100%                                        | Α             | 24              | 24                  | 43         | IJ     | 22              | 24    | 24   | 8.12   | 8.04     | 607  | 8.09  | 8.01   | 7,95 | 7.97 |
|                                             |               | OLI             | D SALI              | NITY       | (PPT)  |                 |       |      |        |          |      |       |        |      | -    |
| CONC                                        | REP           | 1               | 2                   | 3          | 4      | 5               | 6     | 7    |        |          |      |       |        |      |      |
| LAB                                         | Α             | 26              | 76                  | 24         | 25     | 25              | 25    | 22   |        |          |      |       |        |      |      |
| RW                                          | А             | 25              | 75                  | 24         | 25     | 20              | 26    | 75   |        |          |      |       |        |      |      |
| 6.25%                                       | Α             | 25              | 75                  | 24         | 73     | 20              | 26    | 25   |        |          |      |       |        |      |      |
| 12.5%                                       | Α             | 24              | 25                  | 24         | 24     | 25              | 26    | 74   |        |          |      |       |        |      |      |
| 25%                                         | Α             | 75              | 25                  | US         | 24     | 26              | 26    | 25   |        |          |      |       |        |      | 4.   |
| 50%                                         | Α             | 25              | 25                  | 15         | 25     | 26              | 26    | 76   |        |          |      |       |        |      |      |
| 100%                                        | Α             | 75              | 15                  | 15         | щ      | 26              | 26    | 76   | d.     |          |      |       |        |      |      |
| INC TE                                      | MP:           | 25              | 75                  | <b>1</b> 5 | 25     | 25              | 25    | 75   |        |          |      |       |        |      |      |
| DATE:                                       |               | 9/23            | 9/24                | 9125       | 9/26   | 09/27           | 09/28 | 9/29 |        |          |      |       |        |      |      |
| TIME:                                       |               | 0850            | 0943                | ŀ          | l      | l               | ì     | 1 1  |        |          |      |       |        |      |      |
| INITIAL                                     | S:            | NP              | NP                  | 3          | めし     |                 | HK    |      |        |          |      |       |        |      |      |

### **PREPARATION of DILUTIONS**

STUDY: ZC494 CLIENT: ESS Laboratories SAMPLE: Effluent - Kendall Station
SPECIES: M. beryllina TEST: chronic renewal DILUENT: Receiving Water

| START         | Day: 0    |           | Day: 1      |                |
|---------------|-----------|-----------|-------------|----------------|
| Diluent: RW   | Sample: 🕹 | .Do       | Sample: Ēo, | P <sub>o</sub> |
| Concentration | Vol Eff   | Final Vol | Vol Eff     | Final Vol      |
| Lab           | 0         | 2000      | O           | 1000           |
| RW            | 0         | )         | 0           |                |
| 6.25%         | 125       |           | 62.5        |                |
| 12.5%         | 250       |           | 125         |                |
| 25%           | 500       |           | 250         |                |
| 50%           | 1000      |           | 500         |                |
| 100%          | 2000      | V         | 1006        | V              |

|       | Date     | Time | Init | Brine Shrimp |
|-------|----------|------|------|--------------|
| Day 0 | 09/22/15 | 1450 | 五    | A-4046       |
| Day 1 | 09123/15 | 1300 | Eß   | A-4046       |
| Day 2 | 9/24/15  | 1055 | NP   | A-4064       |
| Day 3 | 9/25/15  | 1105 | NP   | A-4064       |
| Day 4 | 09/26    | 1030 | NP   | A-4064       |
| Day 5 | 09127    | 1140 | EA   | A-4064       |
| Day 6 | 09/28    | 1430 | HK   | A-4064       |

| 1 <sup>st</sup> Renewal | Day: つ    |           | Day: ろ                    |           | Day:    |           |  |
|-------------------------|-----------|-----------|---------------------------|-----------|---------|-----------|--|
| Diluent: RW             | Sample: E | , D.      | Sample: $\mathcal{E}_{i}$ | , D,      | Sample: |           |  |
| Concentration           | Vol Eff   | Final Vol | Vol Eff                   | Final Vol | Vol Eff | Final Vol |  |
| Lab                     | 0         | 1600      | 0                         | 1600      |         |           |  |
| RW                      | 0         |           | 0                         | 1         |         |           |  |
| 6.25%                   | 100       |           | 103                       |           |         |           |  |
| 12.5%                   | 700       |           | 7.00                      |           |         |           |  |
| 25%                     | 400       |           | 400                       |           |         |           |  |
| 50%                     | 908       |           | 800                       |           |         |           |  |
| 100%                    | 1600      | A         | 1600                      | V         |         |           |  |

| L     | ab Water ID: |
|-------|--------------|
| Day 0 | 16H35        |
| Day 1 | 26435        |
| Day 2 | 26435        |
| Day 3 | 76435        |
| Day 4 | 26435        |
| Day 5 | 26435        |
| Day 6 | 26435以一覧     |
|       | 9/18         |

| 2 <sup>nd</sup> Renewal | Day: 4     |           | Day: 5    |           | Day: (e        |           |  |
|-------------------------|------------|-----------|-----------|-----------|----------------|-----------|--|
| Diluent: RW             | Sample: Ez | $D_2$     | Sample: ∈ | 2.02      | Sample: E2, D2 |           |  |
| Concentration           | Vol Eff    | Final Vol | Vol Eff   | Final Vol | Vol Eff        | Final Vol |  |
| Lab                     | O          | 1600      | 0         | 1600      | 0              | 1600      |  |
| RW                      | 0          | į         | 0         |           | 0              |           |  |
| 6.25%                   | 100        |           | 100       |           | 100            |           |  |
| 12.5%                   | 700        |           | 200       |           | 200            |           |  |
| 25%                     | 400        |           | 400       |           | 400            |           |  |
| 50%                     | පීරා       |           | 800       |           | 800            |           |  |
| 100%                    | 1600       | <b>V</b>  | 1600      | y         | 1600           |           |  |

## PREPARATION OF DILUTIONS

| study: 26633                                                                    | CI                                                  | LIENT: ESS | Laboratories    |  |  |  |  |  |
|---------------------------------------------------------------------------------|-----------------------------------------------------|------------|-----------------|--|--|--|--|--|
| SPECIES: A. punctula                                                            | managabaga palakan menangga palakan harat dialah me |            |                 |  |  |  |  |  |
| C3) જોય<br>Diluent: 3૦ <sub>/p</sub> માટે કેટ્રાઇ<br><del>Receiving Water</del> | Diluent: אין    |            |                 |  |  |  |  |  |
| Concentration %                                                                 | Vol. Eff.(                                          | mls)       | Final Vol.(mls) |  |  |  |  |  |
| Lab Salt                                                                        | Ú                                                   |            | 100             |  |  |  |  |  |
| RW                                                                              | 0                                                   |            |                 |  |  |  |  |  |
| 6.25%                                                                           | 6.25                                                |            |                 |  |  |  |  |  |
| 12.5%                                                                           | 12.5                                                |            |                 |  |  |  |  |  |
| 25%                                                                             | Z5                                                  |            |                 |  |  |  |  |  |
| 50%                                                                             | 50                                                  |            |                 |  |  |  |  |  |
| 100%                                                                            | 100                                                 |            | V               |  |  |  |  |  |
| INITIALS:                                                                       | m                                                   |            |                 |  |  |  |  |  |
| TIME:                                                                           | 1415                                                |            |                 |  |  |  |  |  |
| DATE:                                                                           | 10/14/15                                            |            |                 |  |  |  |  |  |

RW = Receiving Water

# METER USE RECORD MARINE CHRONIC

M. beryllina

| STUDY: Z64                 | 94                                 | CLIE | NT: I  | ESS Labora | atorie | es        |            | A      | SAMPLE:                                     | Effluent - k | Kendall Sta | ition |
|----------------------------|------------------------------------|------|--------|------------|--------|-----------|------------|--------|---------------------------------------------|--------------|-------------|-------|
|                            |                                    |      | (      | OLD WATE   | R QI   | JALITI    | ES - M     | l. bei | yllina                                      |              |             |       |
|                            | 0                                  | 1    |        | 2          |        | 3         | 4          |        | 5                                           | 6            | 7           | 8     |
| Water Quality<br>Station # |                                    | 1    |        | 1) (       |        | ļ         | ١          |        |                                             |              |             |       |
| Initials                   |                                    | N    | )      | NP         | Í      | 30        | R          | /      | 타                                           | DRAK         | NP          |       |
|                            |                                    |      |        |            |        |           |            |        |                                             | HK (         | PANA.       |       |
|                            | NEW WATER QUALITIES - M. beryllina |      |        |            |        |           |            |        |                                             |              |             |       |
|                            | 0                                  | 1    | 1 2    |            |        |           | 4          |        | 5                                           | 6            | 7           | 8     |
| Water Quality<br>Station # | 1                                  | 2    | ,<br>- | 2          |        | 2 2       |            |        |                                             | 1            |             |       |
| Initials                   | EH                                 | EBIO | 9      | NP         | hb     |           | N          | 2      | ΕH                                          | ZHK          |             |       |
| Date                       | 09/22/15                           |      |        | 9124       | 9/     | 9/25 9/26 |            | Q      | 09/27                                       | 09/28        | 09/29       |       |
|                            |                                    | Œ3   | 9/2    | 3          |        |           |            | _      |                                             | OBH<br>OH29  |             |       |
| Water Qualit               | y Station#                         | 1    | ,      | Nater Qual | ity S  | tation #  | <b>‡</b> 2 | CC     | OMMENTS                                     | -            |             |       |
| DO meter#                  | 24                                 |      | DO     | meter#     |        |           | 23         |        |                                             |              |             |       |
| DO probe #                 | 94                                 |      | DO     | probe#     |        |           | 93         |        |                                             | ,            |             |       |
| pH meter#                  | 109-                               | 7    | рН     | H meter#   |        | Ц         | 70         |        |                                             |              |             |       |
| pH probe#                  | 137                                |      | рΗ     | oH probe#  |        | İ.        | 360        |        | W-4W-7W-7W-7W-7W-7W-7W-7W-7W-7W-7W-7W-7W-7W |              |             |       |
| S/C meter #                | 4813                               | 30E  | S/C    | meter#     |        | Y513      |            |        |                                             |              |             |       |
| S/C probe #                | 1                                  |      | S/C    | probe #    |        | Ŋ         |            |        |                                             |              |             |       |

# SAMPLE RECEIPT RECORD FOR CHRONIC TOXICITY EVALUATIONS

| STUDY #: 26494                         |                                         | CLIENT: E65 Labora                   | tory                          |
|----------------------------------------|-----------------------------------------|--------------------------------------|-------------------------------|
|                                        | SAMPLE RECE                             | IPT INFORMATION                      |                               |
|                                        | Start Sample                            | First Renewal                        | Second Renewal                |
| Sample Receipt Date & Time:            | 09/21/15 1455                           | 09/23/15 1340                        | 9/25/15 1555/16               |
| Received By:                           | PK                                      | RM                                   | BULL.                         |
| Delivered Via:                         | Fed Ex UPS Client Courier ESI           | Fed Ex UPS Client Courier ESD        | Fed Ex UPS Client Courier ESI |
| Logged Into Lab By:                    | EH                                      | NP                                   | B                             |
| Date &Time Logged In:                  | 09/21/19 1510                           | 09/23/15 1440                        | alus (1568)                   |
|                                        | SAMPLE CONDIT                           | TION INFORMATION                     |                               |
| Chain of Custody?                      | (Yes or No                              | Yes or No                            | Yes or No                     |
| Chain of Custody Signed?               | es or No                                | Yes or No                            | Yes or No                     |
| Chain of Custody Complete?             | Yes or No                               | Yes or No                            | (Yes or No                    |
| Sample Date?                           | Yes or No                               | Yes or No                            | Yes or No                     |
| Sample Time?                           | Yes or No                               | Tes or No                            | Yes or No                     |
| Sample Type?                           | (Yes) or No                             | Yes or No                            | Yes or No                     |
| Custody Seal in Place?                 | Yes (NA) No                             | Yes (NA) No                          | Yes (NA) No                   |
| Shipping Container Intact?             | (Yes) or No                             | Yes or No                            | Yes or No                     |
| Temp Blank Temperature:                | 4.0°C                                   | 1.Z°C                                | ) VC                          |
| DOES CLIENT NEED NOTIFICATION OF TEMP? | Yes or No                               | Yes or No                            | Yes or (No                    |
| Sample Arrived on Ice?                 | (res) or No                             | Yes or No                            | (Yes) or No                   |
| COMMENTS:                              | Seccoc                                  | See COC                              | 500,500                       |
|                                        |                                         |                                      | <i>y</i>                      |
|                                        |                                         |                                      |                               |
|                                        |                                         |                                      |                               |
|                                        |                                         |                                      |                               |
|                                        |                                         |                                      |                               |
|                                        | *************************************** | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                               |
|                                        |                                         |                                      |                               |

P:\GENERAL PROJECTS\FORMS\LABFORMS\Sample Receipt Record - Chronic 2013.wpd

### SAMPLE RECEIPT AND CONDITION DOCUMENTATION

Page 1 of 1

| STUDY NO:                          | 26633         |                                                        |               |
|------------------------------------|---------------|--------------------------------------------------------|---------------|
| SDG No:                            |               |                                                        |               |
| Project:                           | Kendall       |                                                        |               |
| Delivered via:                     | Client        |                                                        |               |
| Date and Time Received:            | 10/16/15 1315 | Date and Time Logged into Lab:                         | 10/16/15 1340 |
| Received By:                       | KC            | Logged into Lab by:                                    | KCLL          |
| Air bill / Way bill:               | No            | Air bill included in folder if received?               | NA            |
| Cooler on ice/packs:               | Yes           | Custody Seals present?                                 | NA            |
| Cooler Blank Temp (C) at arrival:  | : 2           | Custody Seals intact?                                  | NA            |
| Number of COC Pages:               | 1             |                                                        |               |
| COC Serial Number(s):              | NA            |                                                        |               |
| COC Complete:                      | Yes           | Does the info on the COC match the samples?            | Yes           |
| Sampled Date:                      | Yes           | Were samples received within holding time?             | Yes           |
| Field ID complete:                 | Yes           | Were all samples properly labeled?                     | Yes           |
| Sampled Time:                      | Yes           | Were proper sample containers used?                    | Yes           |
| Analysis request:                  | Yes           | Were samples received intact? (none broken or leaking) | Yes           |
| COC Signed and dated:              | Yes           | Were sample volumes sufficient for requested analysis? | Yes           |
| Were all samples received?         | Yes           | Were VOC vials free of headspace?                      | NA            |
| Client notification/authorization: | Not required  | pH Test strip ID number:                               |               |

| Field ID                                | Lab ID                 | Мх | Analysis Requested                 | Bottle                 | Req'd<br>Pres'n | Verified<br>Pres'n |
|-----------------------------------------|------------------------|----|------------------------------------|------------------------|-----------------|--------------------|
| Effluent Start<br>Receiving Water Start | 26633-001<br>26633-002 | W  | AP01CR - Retest<br>AP01CR - Retest | 1x3750 mL<br>1x3750 mL |                 |                    |
|                                         |                        |    |                                    |                        |                 |                    |
|                                         |                        |    |                                    |                        |                 |                    |
|                                         |                        |    |                                    |                        |                 |                    |
|                                         |                        |    |                                    |                        |                 |                    |

| ne COC |  |
|--------|--|
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |

Voice: 603-926-3345 FAX: 603-926-3521

ESI Job No: 26494

ERR PI 30日月 2:55 MBTDCK, APOICR CDPPTDCR:StartSample GBPP7BGR-StartDiluent Matrix Filter Analyses Requested\
S=Solid N=Not needed Special Instructions:
W=Water F=Done in field
L=Lab to do ESS Laboratory - Kendall Station 000 Task: Date: Date: z Z Joe Sirbak email: Jsirbak@thielsch.com P0604 Water Water Field Preser-vation Project Manager: Project Number: 4 C 4 C Received at Lab By: Project Name: Received By: Type (P/G/T) CHAIN OF CUSTODY DOCUMENTATION ۵. ۵ Container Size (mL) ( 3750 3750 Time: 1455 ဥ ო က Sampled Grab or composite (G/C) Address: Hopkinton, MA 01748 Time:  $\circ$ 0 MAN 508-435-9912 3717216 Address: 5 Avenue D Contact: Joe Sirbak 09/20/15 0800/ -03/2/15 0800/ Date Time Sampled Sampled 1300 Date: S Pulc Fax: 508-435-9244 x4720 002 Receiving Water Start ESS Laboratory Your Field ID: (must agree with container) Joe Sirbak Joe Sirbak 001 Effluent Start NPDES Relinquished By: Relinquished By Invoice to: Lab Number Report to: Client: (assigned by (ab) Voice: **Protocol**:

Comments: Marine chronic assays will be conducted if effluent PPT is >1 at time of collection.

COC Number: A1012420

Sept 2015 Sample Delivery Group No:

ŏ

Page

Voice: 603-926-3345 FAX: 603-926-3521

ESI Job No: 22494

|                  | 71000 1111 1101011111111           | CH/                    | CHAIN OF CUSTODY DOCUMENTATION | STODY I         | DOCUME | ENTATION     | -                                    |            |                                                   |                                  |                                                |
|------------------|------------------------------------|------------------------|--------------------------------|-----------------|--------|--------------|--------------------------------------|------------|---------------------------------------------------|----------------------------------|------------------------------------------------|
| Client: E        | ESS Laboratory                     | Contact: Joe Sirbak    | Sirbak                         |                 |        | Proj         | Project Name:                        | ESS L      | aboratory -                                       | ESS Laboratory - Kendall Station |                                                |
| Report to: Jo    | Joe Sirbak                         | Address: 5 Avenue D    | enue D                         |                 |        | Proje        | Project Number:                      | P0604      |                                                   | Task: 0001                       |                                                |
| Invoice to: Jo   | Joe Sirbak                         | Address: Hopkinton, MA | kinton, MA                     | 01748           |        | Proje        | Project Manager:                     | Joe Sirbak |                                                   |                                  |                                                |
| Voice: 5(        | 508-435-9244 x4720                 | Fax: 508-              | 508-435-9912                   |                 |        | ema          | email: Jsirbak@thielsch.com          | ielsch.cor | _                                                 |                                  | ERR                                            |
| 9                | ES                                 |                        |                                |                 |        |              |                                      |            |                                                   |                                  | i                                              |
| per              | Your Field ID:<br>(must agree with | Sampled Sampled        | e Sampled                      | d Grab          | 2      | Container    | Field                                | Matrix     | Filter                                            | Filter   Analyses Requested\     |                                                |
| by lab) co       | container)                         | ,                      | <u> </u>                       | posite<br>(G/C) | 2      | nt.) (P/G/T) |                                      | V=Water    | N=Valid N=Not needed S<br>W=Water F=Done in field | opedal Instructions:             | - M. S. L. |
| 003 Et           | 003 Effluent First Renewal         | WNW 0080 82/6-22/6     | SO MUM                         | Z               |        | 3750 P       | 04                                   | Water      |                                                   | CDPP7DCR 1stRenewal Samule       |                                                |
| 004 Rt           | 004 Receiving Water First Renewal  | 9/13/15/1100           |                                | 9               | 10 y   | 3750 P       | 7 t                                  | Water      |                                                   | CDP7DCR 1stRenewal Dillient      |                                                |
|                  |                                    |                        | -                              |                 | L      |              |                                      |            |                                                   |                                  |                                                |
|                  |                                    |                        |                                |                 |        |              |                                      |            |                                                   |                                  |                                                |
|                  |                                    |                        |                                |                 |        |              |                                      |            |                                                   |                                  |                                                |
|                  |                                    |                        |                                |                 |        |              |                                      |            |                                                   |                                  |                                                |
|                  |                                    |                        |                                |                 |        |              |                                      |            |                                                   |                                  |                                                |
|                  |                                    |                        |                                |                 |        |              |                                      |            |                                                   |                                  |                                                |
|                  |                                    |                        |                                |                 |        |              |                                      |            |                                                   |                                  |                                                |
|                  |                                    |                        |                                |                 |        |              |                                      |            |                                                   |                                  |                                                |
|                  |                                    |                        |                                |                 |        |              |                                      |            |                                                   |                                  |                                                |
|                  |                                    |                        |                                |                 |        |              |                                      |            |                                                   |                                  |                                                |
| Relinquished By: |                                    | Date:                  | 9/23 15                        | Time:           | 1340   |              | Received By:                         |            |                                                   | Date: Time:                      |                                                |
| Relinquished By: |                                    | Date:                  |                                | Time:           |        | Recei        | Received at Lab By: Oleman Churchoac | m Huch     |                                                   | Date:09[23]15 Time: 134〇         |                                                |
|                  |                                    |                        |                                |                 |        |              |                                      |            |                                                   |                                  |                                                |

Comments: Marine chronic assays will be conducted if effluent PPT is >1 at time of collection.

1,8 wing 2 2 halppala - Janafan 2 2 nat war or Base 45 of 66 by 66 by 66 by 66 by 66 by 67 by 68 by 6

ŏ

Sept 2015

Voice: 603-926-3345 FAX: 603-926-3521

ESI JOD NO: 26494

|                                      | 1 ampton, mi 00042                                  | 5                            | CHAIN OF CUSTODY DOCUMENTATION | SUSTOD                           | Y DOCU     | MENTA.                 | NOI                 |                             |                              |                                     |                                                               |     |
|--------------------------------------|-----------------------------------------------------|------------------------------|--------------------------------|----------------------------------|------------|------------------------|---------------------|-----------------------------|------------------------------|-------------------------------------|---------------------------------------------------------------|-----|
| Client: ES                           | ESS Laboratory                                      | Contact: Joe Sirbak          | Sirbak                         |                                  |            |                        | Project Name:       | ame:                        | ESS La                       | boratory -                          | ESS Laboratory - Kendall Station                              |     |
| Report to: Jo                        | Joe Sirbak                                          | Address: 5 Avenue D          | venue D                        |                                  |            |                        | Project Number:     | umber:                      | P0604                        |                                     | Task: 0001                                                    |     |
| Invoice to: Jo                       | Joe Sirbak                                          | Address: Hopkinton, MA       | okinton, N                     | AA 01748                         | 80         |                        | Project Manager:    | anager:                     | Joe Sirbak                   | ak                                  |                                                               |     |
| Voice: 50                            | 508-435-9244 x4720                                  | Fax: 508                     | 508-435-9912                   | 2                                |            | 9                      | email: Js           | email: Jsirbak@thielsch.com | lsch.com                     |                                     |                                                               | 200 |
| 맆                                    | S                                                   |                              |                                |                                  |            |                        |                     |                             |                              |                                     |                                                               |     |
| Lab Number Yor (mu (assigned by lab) | Your Field ID:<br>(must agree with<br>container)    | Date Time<br>Sampled Sampled | me Sampled<br>ipled By         | pled Grab<br>y or com-<br>posite | ON -t e    | Container<br>Size (mL) | Type<br>(P/G/T)     | Field<br>Preser-<br>vation  | Matrix<br>S=Solid<br>W=Water | Filter N=Not needed F=Done in field | Filter Analyses Requested\ N=Not needed Special Instructions: |     |
| 005 Eff                              | 005 Effluent Second Renewal                         | 9/24/15 GB                   | 0%0°,<br>0%0°,<br>0%00         | MN/M C                           | 1 1        | 3750                   | Ф.                  | 7<br>0                      | Water                        | L=Lab to do                         | CDP7DCR 2ndRenewal Sample                                     |     |
| 006 Re                               | 006 Receiving Water Second Renewal                  | 9 29 K                       | WNW 5580                       | M 6                              | 10 P       | <b>√</b> (<br>3750     | <u></u>             | 4 C                         | Water                        |                                     | CDPP7DCR 2ndRenewal Diluent                                   |     |
|                                      |                                                     | <u> </u>                     |                                |                                  |            |                        |                     |                             |                              |                                     |                                                               |     |
|                                      |                                                     |                              |                                |                                  |            |                        |                     |                             |                              |                                     |                                                               |     |
|                                      |                                                     |                              |                                |                                  |            |                        |                     |                             |                              |                                     |                                                               |     |
|                                      |                                                     |                              |                                |                                  |            |                        |                     |                             |                              |                                     |                                                               |     |
|                                      |                                                     |                              |                                |                                  |            |                        |                     |                             |                              |                                     |                                                               | T   |
|                                      |                                                     |                              |                                |                                  |            |                        |                     |                             |                              |                                     |                                                               |     |
|                                      |                                                     |                              |                                |                                  |            |                        |                     |                             |                              |                                     |                                                               |     |
|                                      |                                                     |                              |                                |                                  |            |                        |                     |                             |                              |                                     |                                                               |     |
|                                      |                                                     |                              |                                |                                  |            |                        |                     |                             |                              |                                     |                                                               |     |
|                                      |                                                     |                              |                                |                                  |            |                        |                     |                             |                              |                                     |                                                               |     |
| Relinquished By:                     |                                                     | Date: 9/                     | 9/25/15                        |                                  | Time: 1/05 | <u>«</u>               | Received By:        | Jed.                        | Court                        |                                     | Date: 9/25/15 Time: 1/05                                      |     |
| Relinquished By:                     | \                                                   | Date:                        | -                              | Time:                            |            | <u> </u>               | Received at Lab By: | Lab By:                     | )                            |                                     | Date:                                                         |     |
| Commontal Discissor                  | the state of the property of the success of seconds |                              | ;                              |                                  |            |                        |                     |                             |                              |                                     |                                                               | 1   |

Comments: Marine chronic assays will be conducted if effluent PPT is >1 at time of collection.

Sample Delivery Group No:

Sept 2015

₽

EnviroSystems, Inc. I Lafayette Road PO. Box 778 Hampton, N.H. 03843

Voice: 603-926-3345 FAX: 603-926-3521

ESI Job No: 26633

CHAIN OF CUSTODY DOCUMENTATION

| Client:                            | Olient: ESS Lab                                  | Contact:               |                 |               |                         | ď                                           | Project Name: Kendal         | : Kend                     | a ۱ ا                                   |                                                 | Page l of                                    |                    | — Т |
|------------------------------------|--------------------------------------------------|------------------------|-----------------|---------------|-------------------------|---------------------------------------------|------------------------------|----------------------------|-----------------------------------------|-------------------------------------------------|----------------------------------------------|--------------------|-----|
| Report to:                         | Report to: Joe Sirbak / Matt Milly               | Address:               |                 |               |                         | <u> </u>                                    | Project Number:              | er:                        |                                         |                                                 |                                              |                    |     |
| Invoice to:                        | ,                                                | Address:               |                 |               |                         | Ğ.                                          | Project Manager:             | ger:                       |                                         |                                                 |                                              |                    | Т   |
| Voice:                             |                                                  | Fax:                   |                 |               |                         | e                                           | email:                       |                            |                                         |                                                 | P.O. No:                                     | Quote No:          | 1   |
| Protocol:                          | RCRA SDWA                                        | NPDES                  | USCOE           | OE.           |                         | Other                                       |                              | 1                          |                                         |                                                 |                                              |                    | 1   |
| Lab Number<br>(assigned<br>by lab) | Your Field ID:<br>(must agree with<br>container) | Date<br>Sampled        | Time<br>Sampled | Sampled<br>By | Grab Cor composit (G/C) | Container Container Size Type (ml.) (P/G/T) | Container<br>Type<br>(P/G/T) | Field<br>Preser-<br>vation | Matrix<br>S=Solid N<br>W=Water F=       | Filter N=Not needed F=Done in field L=Lab to do | Analyses Requested\<br>Special Instructions: |                    |     |
| 100                                | Final Ettivent                                   | 10/15/15<br>1-10/10/15 | 25h11           | MINW          | C                       | 18                                          | 9                            | Hoc                        | 3                                       | Z                                               | APOICR - Refest                              | e hest             |     |
| 700                                | Rec. Water                                       | 10/16/15               | 1130            | μwψ.          | C                       | 18F                                         | C                            | hoc                        | 3                                       | 2.                                              | Apolck - Rebest                              | الاعاب             | I   |
|                                    |                                                  | -                      |                 |               |                         |                                             |                              |                            | *************************************** |                                                 |                                              |                    |     |
|                                    |                                                  |                        |                 |               |                         |                                             |                              |                            |                                         |                                                 |                                              |                    | ŀ   |
|                                    |                                                  |                        |                 |               |                         |                                             |                              |                            |                                         |                                                 |                                              |                    | ı   |
|                                    |                                                  |                        |                 |               |                         |                                             |                              |                            |                                         |                                                 |                                              |                    | 1   |
|                                    |                                                  |                        |                 |               |                         |                                             |                              |                            |                                         |                                                 |                                              |                    | 1   |
|                                    |                                                  |                        |                 |               |                         |                                             |                              |                            |                                         |                                                 |                                              |                    | 1   |
|                                    |                                                  |                        |                 |               |                         |                                             |                              |                            |                                         |                                                 |                                              |                    | ł   |
|                                    |                                                  |                        |                 |               |                         |                                             |                              |                            |                                         |                                                 |                                              |                    | 1   |
|                                    |                                                  |                        |                 |               |                         |                                             |                              |                            |                                         |                                                 |                                              |                    |     |
|                                    |                                                  |                        |                 |               |                         |                                             |                              |                            |                                         |                                                 |                                              |                    |     |
| Relinquished By:                   | d By:                                            | u                      | Date: 10/16/15  |               | Time: (3) 5             | \                                           | Received By:                 | N. Hich                    | 19                                      | Ğ                                               | -Date: 10/11/15                              | Time: 131 <i>5</i> |     |
| Relinquished By:                   | d By:                                            | L-1                    | ,<br>Date:      | F             | Time:                   |                                             | Received at Lab By:          | it Lab By:                 |                                         | Ď                                               | Date:                                        | Time:              | 1   |
| Comments:                          | (7,2):                                           |                        |                 |               |                         |                                             |                              |                            |                                         |                                                 |                                              |                    | 1   |
| f 99                               |                                                  |                        |                 |               |                         |                                             |                              |                            |                                         |                                                 |                                              |                    | 11  |

Sample Delivery Group No:

Assay Review Checklist

| DATE IN:  | 09/21/15 | STUDY#: ZG494            |  |
|-----------|----------|--------------------------|--|
| DATE DUE: |          | CLIENT: ESS Laboratories |  |
|           | ***      | PROJECT:                 |  |
|           |          | ASSAY: MBTDCR, APOICR    |  |

|       |          | Proje                                 | ct Paperwork Check for Completeness                   |
|-------|----------|---------------------------------------|-------------------------------------------------------|
|       | Date     | Initials                              | Comments                                              |
| Day 0 | 09/22/15 | EH                                    |                                                       |
| Day 1 | 09/23    | Eß                                    |                                                       |
| Day 2 | 9/24/15  | NP                                    | •                                                     |
| Day 3 | 9/25/15  | NP                                    | Previous ARC Sheet Missing - please Pill in initials. |
| Day 4 | 9/26/15  | NP                                    | THE SHEET MISSING PREASE FIRE IN INITIALS.            |
| Day 5 | 09/27    | EH                                    |                                                       |
| Day 6 | 09/28    | HK                                    |                                                       |
| Day 7 | 09/29    | EH                                    |                                                       |
| Day 8 |          | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                                                       |

| Analyst Data Review                                 | D    | ate          | Init | ials     | Comments |
|-----------------------------------------------------|------|--------------|------|----------|----------|
| Chains of Custody Complete                          | 10/0 | TIS          | 12   | ———<br>H |          |
| Sample Receipt Complete                             | 1    |              | 1    | <u> </u> |          |
| Organism Culture Sheet(s)                           |      |              |      |          |          |
| Bench Sheets Complete (dates, times, initials, etc) |      |              |      |          |          |
| Water Quality Data Complete                         |      |              |      |          |          |
| TRC Values & Bottle Numbers                         | 1    | t            |      |          |          |
| Daphnid Calculations Complete                       | N/   | <del>)</del> |      |          |          |
| Weights Reported                                    | 1    | 7/15         |      |          |          |
| Assay Acceptability Review                          |      | V            |      |          |          |

| Technical Report Review          | Date     | Initials | Comments                          |              |
|----------------------------------|----------|----------|-----------------------------------|--------------|
| Statistical Analysis Complete    | 1011415  | KCm      | 10/21 reprinted on un correct     | tsource info |
| Statistical Analysis Reviewed    | 10/15/15 | B        |                                   | ,            |
| Data Acceptability Review        | 10/12/15 | KC @     |                                   |              |
| Supporting Chemistry Report      | NIA      |          |                                   |              |
| Draft Report                     | 10/4/15  | us       |                                   |              |
| QA Audit/Review Complete         |          |          |                                   |              |
| Final Report Reviewed            | 10/22/15 | me       |                                   |              |
| Final Report Printed - PDF       | J.       | V        |                                   |              |
| Executive Summary / Chems Sent   | 10/15/15 | Vb       | anailed treesum & overleter       | •            |
| Report E-mailed / Faxed          | 10/22/15 | NR-      | ALCOHOL THERE SHILLS & WALL COLOR |              |
| Report Logged Out / Invoice Sent |          |          |                                   |              |
| Report Scanned to Archive        |          |          |                                   |              |

P:\GENERAL PROJECTS\FORMS\LABFORMS\\$ Assay Review Checklist.wpd

## Assay Review Checklist

| DATE IN:  | 10/16/15 | <b>STUDY#</b> : <u>166</u> 33 |  |
|-----------|----------|-------------------------------|--|
| DATE DUE: | 10/30/15 | CLIENT: ESS Laboraties        |  |
|           |          | PROJECT:                      |  |
|           |          | ASSAY: APONCR COLOST          |  |

|       |          | Projed   | ct Paperwork Check for Completeness |
|-------|----------|----------|-------------------------------------|
|       | Date     | Initials | Comments                            |
| Day 0 | 10/16/15 | B        |                                     |
| Day 1 | 10/17    | EH       |                                     |
| Day 2 | 10118    | EH       | ,                                   |
| Day 3 | 10/19    | EH       |                                     |
| Day 4 | 1001500  |          |                                     |
| Day 5 |          |          |                                     |
| Day 6 |          |          |                                     |
| Day 7 |          |          |                                     |
| Day 8 |          |          |                                     |

| Analyst Data Review                                 | Date     | Initials   | Comments |
|-----------------------------------------------------|----------|------------|----------|
| Chains of Custody Complete                          | Iolialis | EH         |          |
| Sample Receipt Complete                             | 1        |            |          |
| Organism Culture Sheet(s)                           | NA       |            |          |
| Bench Sheets Complete (dates, times, initials, etc) | 10/19/15 |            |          |
| Water Quality Data Complete                         | T \      |            |          |
| TRC Values & Bottle Numbers                         |          |            |          |
| Daphnid Calculations Complete                       | NΔ       | \          |          |
| Weights Reported                                    | NA       |            |          |
| Assay Acceptability Review                          | WIBIS    | <u>ا</u> ل |          |

| Technical Report Review          | Date     | Initials | Comments                                  |                                      |
|----------------------------------|----------|----------|-------------------------------------------|--------------------------------------|
| Statistical Analysis Complete    | 16/20/15 | MR       | 10/21 reprinted 100 un correct            | client Wo                            |
| Statistical Analysis Reviewed    | 10/2/15  | UB       |                                           | ·                                    |
| Data Acceptability Review        | 10/20/15 | WR       | Ap-nonista doscresp<br>Lest in 252 + 1002 | 四5岁船                                 |
| Supporting Chemistry Report      | NIA      |          | e. NOEC = 12.52. All TV                   | L Js BJ CO<br>C prese me<br>vi dence |
| Draft Report                     | 10/21/15 | B        | supports a choec                          | 507.                                 |
| QA Audit/Review Complete         |          |          |                                           |                                      |
| Final Report Reviewed            | 10/22/15 | WE       |                                           |                                      |
| Final Report Printed - PDF       |          |          |                                           |                                      |
| Executive Summary / Chems Sent   |          |          |                                           |                                      |
| Report E-mailed / Faxed          | 10 22/15 | WE       |                                           |                                      |
| Report Logged Out / Invoice Sent |          | 1        |                                           |                                      |
| Report Scanned to Archive        | V        | V        |                                           |                                      |

P:\GENERAL PROJECTS\FORMS\LABFORMS\\$ Assay Review Checklist.wpd

Non-Compliant Bench Sheets and Data

A. punctulata assay Started September 24, 2015

Total Pages (Including this Page) = 7

|            | A                    | rbacia p  | unctula         | ata Chronic           | Fertilizati         | on Ass                                | ay                                                                                          |                          |
|------------|----------------------|-----------|-----------------|-----------------------|---------------------|---------------------------------------|---------------------------------------------------------------------------------------------|--------------------------|
| STUDY:     | CLIENT:              |           |                 | E/DILUENT:            |                     | DATE:                                 | 09/24/15                                                                                    |                          |
| 20494      | ESS Labora           | atories   | EFFLUE          | NT/RECEIVIN           | IG WATER            |                                       | s: EH                                                                                       |                          |
| SALINITY A | DJUSTMENT            | RECORD:   | / <i>00</i> 0 n | nl EFFLUENT           | + 33 g SAL<br>(A-39 | T= 100                                | % ACTUAL PE                                                                                 | ERCENTAGE                |
|            |                      |           |                 |                       |                     |                                       | ACTUAL PER                                                                                  |                          |
|            | UENT<br>TRATION)     | D.<br>(mg | O.<br>g/L)      | pH<br>(SU)            | TEMPER<br>(°(       |                                       | SALINITY<br>(ppt)                                                                           | TRC<br>(mg/L)            |
|            | CEIVED"<br>UENT      | lo.       | 8               | 7.63                  |                     |                                       | 1.4                                                                                         | 10.02                    |
|            | CEIVED"<br>ng Water  | ٦,        | 7               | 8.60                  |                     |                                       | 1.5                                                                                         | (0.02                    |
| LAE        | 3 SALT               | 8,7       | <u>5</u>        | 8.07                  | 21                  |                                       | 30                                                                                          | 40.02                    |
| RECEIVIN   | IG WATER             | 8,6       | 7               | 8.13                  | 20                  | )                                     | 30                                                                                          |                          |
| 6.2        | 25%                  | 9,        | \               | 8.31                  | 10                  | )                                     | 30                                                                                          |                          |
| 12         | .5%                  | 9.2       |                 | 8.31                  | 10                  | )                                     | 30                                                                                          |                          |
| 2:         | 5%                   | 9.1       |                 | 8.31                  | 20                  |                                       | 29                                                                                          |                          |
| 50         | 0%                   | 9.1       |                 | 8.19                  | 10                  | · · · · · · · · · · · · · · · · · · · | 29                                                                                          |                          |
| 10         | 0%                   | 9:1       |                 | 8.25                  | 21                  |                                       | 30                                                                                          |                          |
| INCUBATO   | R TEMP °C:           | 15        |                 |                       | -                   |                                       |                                                                                             |                          |
| DA         | TE:                  | 09/24     | 15              |                       |                     |                                       |                                                                                             |                          |
| TII        | ME:                  | 0935      |                 |                       |                     |                                       |                                                                                             |                          |
| INIT       | IALS:                | EH        |                 |                       |                     |                                       |                                                                                             |                          |
| PERM DILUT | TIONS:<br>ACYTOMETER | COUNT,    | E: <u>/</u>     | -<br>/ <u>/</u> X 10⁴ | = SPN               | ı SOLUTI                              | ON D = <u>j. 10</u>                                                                         | <u>×</u> 10 <sup>6</sup> |
| SPER       | M CONCENTI           | RATIONS:  |                 | <b>SOLUTION E</b>     | X 20 = SOLU         | JTION B :                             | $= \frac{4.40\times10^{7}}{2.20\times10^{7}}$ $= \frac{5.50\times10^{6}}{1.20\times10^{6}}$ | _SPM                     |

|                                                                                     |                                         | í e                 |                |                                                                                                                                              |
|-------------------------------------------------------------------------------------|-----------------------------------------|---------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| TIME:                                                                               | 0935                                    |                     |                |                                                                                                                                              |
| INITIALS:                                                                           | EH                                      |                     |                |                                                                                                                                              |
| SPERM DILUTIONS:                                                                    |                                         | _                   |                |                                                                                                                                              |
| HEMACYTOMETER                                                                       | COUNT, E:                               | <u>/</u> ⊘X 10⁴     | = SPM SOLI     | UTION D = <u>1.10 ×</u>                                                                                                                      |
| SPERM CONCENTE                                                                      | RATIONS:                                | <b>SOLUTION E X</b> | 20 = SOLUTION  | $A = \frac{4.40 \times 10^{7}}{8 = \frac{2.20 \times 10^{7}}{5.50 \times 10^{6}}} SF$ $C = \frac{5.50 \times 10^{6}}{5.50 \times 10^{6}} SF$ |
| FINAL COUNTS:                                                                       |                                         |                     |                |                                                                                                                                              |
| FINAL SPERM COU<br>FINAL EGG COUNT                                                  |                                         | Of                  | RGANISM LOT: _ |                                                                                                                                              |
| TEST TIMES:  SPERM COLLECTE EGGS COLLECTED SPERM ADDED: EGGS ADDED: FIXATIVE ADDED: | *************************************** |                     | STATION#:_     | 2                                                                                                                                            |



# Arbacia punctulata Chronic Fertilization Assay

| <b>STUDY:</b><br>26494 | CLIENT:<br>ESS Laboratories | SAMPLE/DILUENT:<br>EFFLUENT / RECEI | VING WATER   | DATE: 9 24 15<br>TIME: 0830<br>INITIALS: VB |
|------------------------|-----------------------------|-------------------------------------|--------------|---------------------------------------------|
|                        |                             | REPLICATE                           | VIAL         |                                             |
| EFFLUENT<br>CONC.      | 1                           | 2                                   | 3            | 4                                           |
|                        | UNFERT/TOTAL                | UNFERT/TOTAL                        | UNFERT/TOTAL | UNFERT/TOTAL                                |
|                        |                             |                                     |              |                                             |
| LAB SALT               | 69 102                      | 69 107                              | 83 100       | 83 103                                      |
| RW                     | 62/111                      | 68/107                              | 63/117       | 73/125                                      |
| 6.25%                  | 64/108                      | 50/111                              | 53 63        | 68/116                                      |
| 12.5%                  | 34/111                      | 57/127                              | 40/101       | 42/103                                      |
| 25%                    | 18/118                      | 16/117                              | 17/133       | 22/122                                      |
| 50%                    | 12/111                      | 3/108                               | 8 101        | 10/111                                      |
| 100%                   | 1/105                       | 0/104                               | 2/102        | 3/105                                       |

## **CETIS Summary Report**

Report Date:

12 Oct-15 11:26 (p 1 of 1)

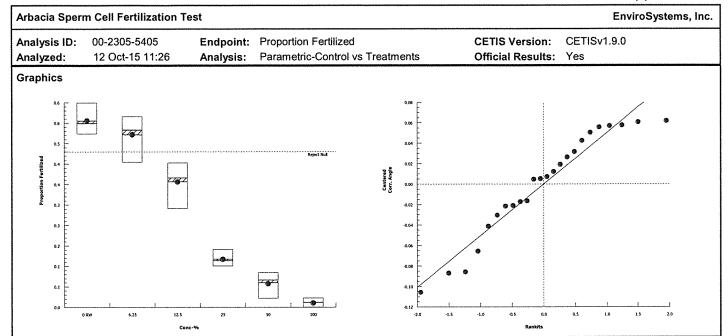
Test Code: 26494Ap | 01-3500-8882

| Arbacia Sper                                          | m Cell Fertiliza                                                  | tion Test      |                                            |                                                                      |              |          |                                         |             |                                            | EnviroSy       | stems, Inc |
|-------------------------------------------------------|-------------------------------------------------------------------|----------------|--------------------------------------------|----------------------------------------------------------------------|--------------|----------|-----------------------------------------|-------------|--------------------------------------------|----------------|------------|
| Batch ID:<br>Start Date:<br>Ending Date:<br>Duration: | 05-4510-6670<br>24 Sep-15 13:4<br>24 Sep-15 15:0<br>80m           | 10 Pr<br>10 Sp | est Type:<br>rotocol:<br>pecies:<br>purce: | Fertilization<br>EPA/821/R-02-<br>Arbacia punctul<br>In-House Cultur | ata          |          |                                         | ent:<br>ne: | Kirk Cram<br>Laboratory Se<br>Generic comm |                |            |
| -                                                     | 04-9860-7300<br>: 23 Sep-15 08:0<br>: 23 Sep-15 13:4<br>30h (1°C) | 00 <b>M</b>    | ode:<br>aterial:<br>ource:<br>ation:       | 26494<br>Power Plant Eff<br>ESS Laboratory<br>Kendall Green I        | /            | 0004898) | Clie<br>Pro                             |             | ESS Laborato<br>Third Quarter \            | •              | ance Test  |
| Multiple Com                                          | parison Summ                                                      | ary            |                                            |                                                                      |              |          |                                         |             |                                            |                |            |
| Analysis ID                                           | Endpoint                                                          |                | Comp                                       | oarison Method                                                       |              |          | NOEL                                    | LOEL        | TOEL                                       | TU             | PMSD       |
| 00-2305-5405                                          | Proportion Fert                                                   | ilized         | Dunne                                      | ett Multiple Com                                                     | parison Test |          | 6.25                                    | 12.5        | 8.839                                      | 16             | 16.6%      |
| Test Accepta                                          | bility                                                            |                |                                            |                                                                      |              | TAC I    | _imits                                  |             |                                            |                |            |
| Analysis ID                                           | Endpoint                                                          |                | Attrib                                     | ute                                                                  | Test Stat    | Lower    | Upper                                   | Overl       | ap Decisio                                 | 1              |            |
| 00-2305-5405                                          | Proportion Fert                                                   | ilized         | Contr                                      | ol Resp                                                              | 0.579        | 0.7      | 1                                       | Yes         | Below A                                    | cceptability ( | Criteria   |
| 00-2305-5405                                          | Proportion Fert                                                   | ilized         | PMS                                        | )                                                                    | 0.166        | 0        | 0.25                                    | Yes         | Passes A                                   | Acceptibility  | Criteria   |
| Proportion F                                          | ertilized Summa                                                   | ary            |                                            |                                                                      |              |          |                                         |             |                                            |                |            |
| Conc-%                                                | Code                                                              | Count          | Mean                                       | 95% LCL                                                              | 95% UCL      | Min      | Max                                     | Std E       | rr Std Dev                                 | CV%            | %Effec     |
| 0                                                     | LS                                                                | 4              | 0.739                                      | 0.593                                                                | 0.886        | 0.645    | 0.830                                   | 0.046       | 0.092                                      | 12.48%         | 0.00%      |
| 0                                                     | RW                                                                | 4              | 0.579                                      | 0.512                                                                | 0.646        | 0.538    | 0.636                                   | 0.021       | 0.042                                      | 7.24%          | 21.66%     |
| 6.25                                                  |                                                                   | 4              | 0.536                                      | 0.429                                                                | 0.643        | 0.450    | 0.593                                   | 0.034       | 0.067                                      | 12.52%         | 27.50%     |
| 12.5                                                  |                                                                   | 4              | 0.390                                      | 0.294                                                                | 0.485        | 0.306    | 0.449                                   | 0.030       | 0.060                                      | 15.41%         | 47.28%     |
| 25                                                    |                                                                   | 4              | 0.149                                      | 0.113                                                                | 0.186        | 0.128    | 0.180                                   | 0.012       | 0.023                                      | 15.42%         | 79.80%     |
| 50                                                    |                                                                   | 4              | 0.076                                      | 0.021                                                                | 0.131        | 0.028    | 0.108                                   | 0.017       | 0.035                                      | 45.18%         | 89.68%     |
| 100                                                   |                                                                   | 4              | 0.014                                      | 0.000                                                                | 0.034        | 0.000    | 0.029                                   | 0.006       | 0.012                                      | 85.75%         | 98.05%     |
| Proportion F                                          | ertilized Detail                                                  |                |                                            |                                                                      |              |          |                                         |             |                                            |                |            |
| Conc-%                                                | Code                                                              | Rep 1          | Rep 2                                      | Rep 3                                                                | Rep 4        |          | *************************************** |             | *****                                      |                |            |
| 0                                                     | LS                                                                | 0.676          | 0.645                                      | 0.830                                                                | 0.806        |          |                                         |             |                                            |                |            |
| 0                                                     | RW                                                                | 0.559          | 0.636                                      | 0.538                                                                | 0.584        |          |                                         |             |                                            |                |            |
| 6.25                                                  |                                                                   | 0.593          | 0.450                                      | 0.515                                                                | 0.586        |          |                                         |             |                                            |                |            |
| 12.5                                                  |                                                                   | 0.306          | 0.449                                      | 0.396                                                                | 0.408        |          |                                         |             |                                            |                |            |
| 25                                                    |                                                                   | 0.153          | 0.137                                      | 0.128                                                                | 0.180        |          |                                         |             |                                            |                |            |
|                                                       |                                                                   |                |                                            |                                                                      |              |          |                                         |             |                                            |                |            |
| 50                                                    |                                                                   | 0.108          | 0.028                                      | 0.079                                                                | 0.090        |          |                                         |             |                                            |                |            |

## **CETIS Analytical Report**

Report Date:

12 Oct-15 11:26 (p 1 of 2)


Test Code:

26494Ap | 01-3500-8882

| Arbacia Sperm Co    | ell Fertilizat | ion Test       |            |                 |               |          |          |            |                 | EnviroSy                               | stems, Inc. |
|---------------------|----------------|----------------|------------|-----------------|---------------|----------|----------|------------|-----------------|----------------------------------------|-------------|
| Analysis ID: 00     | -2305-5405     | En             | dpoint:    | Proportion Fert | ilized        |          | CETI     | S Version  | : CETISv1.      | 9.0                                    |             |
| Analyzed: 12        | Oct-15 11:2    | 26 <b>An</b> : | alysis:    | Parametric-Cor  | ntrol vs Trea | tments   | Offic    | ial Result | s: Yes          | ************************************** |             |
| Sample ID: 04-      | 9860-7300      | Co             | de:        | 26494           |               |          | Clier    | nt: ES     | SS Laboratory   |                                        |             |
| Sample Date: 23     | Sep-15 08:0    | 0 <b>M</b> a   | terial:    | Power Plant Eff | fluent        |          | Proje    | ect: Th    | ird Quarter W   | ET Compli                              | ance Test   |
| Receipt Date: 23    | Sep-15 13:4    | 0 So           | urce:      | ESS Laborator   | y             |          |          |            |                 |                                        |             |
| Sample Age: 30h     | (1 °C)         | Sta            | tion:      | Kendall Green   | Energy (MA    | 0004898) |          |            |                 |                                        |             |
| Data Transform      |                | Alt Hyp        | Trials     | Seed            | TST b         |          | NOEL     | LOEL       | TOEL            | TU                                     | PMSD        |
| Angular (Corrected  | l)             | C>T            | n/a        | n/a             | n/a           |          | 6.25     | 12.5       | 8.839           | 16                                     | 16.6%       |
| Dunnett Multiple    | Compariso      | n Test         |            |                 |               |          |          |            |                 |                                        |             |
| Control vs          | Conc-%         |                | Test S     | tat Critical    | MSD DF        | P-Type   | P-Value  | Decision   | n(α:5%)         |                                        |             |
| Receiving Water     | 6.25           |                | 1.08       | 2.41            | 0.097 6       | CDF      | 0.3865   | Non-Sig    | nificant Effect |                                        |             |
|                     | 12.5*          |                | 4.76       | 2.41            | 0.097 6       | CDF      | 3.7E-04  | •          | int Effect      |                                        |             |
|                     | 25*            |                | 11.7       | 2.41            | 0.097 6       | CDF      | 2.7E-05  | •          | nt Effect       |                                        |             |
|                     | 50*            |                | 14.7       | 2.41            | 0.097 6       | CDF      | 2.7E-05  | _          | nt Effect       |                                        |             |
|                     | 100*           |                | 18.7       | 2.41            | 0.097 6       | CDF      | 2.7E-05  | Significa  | nt Effect       |                                        |             |
| ANOVA Table         |                |                |            |                 |               |          |          |            |                 |                                        |             |
| Source              | Sum Squ        | iares          | Mean       | Square          | DF            | F Stat   | P-Value  | Decision   |                 | · · · · · · · · · · · · · · · · · · ·  |             |
| Between             | 1.89802        |                | 0.3796     |                 | 5             | 117      | <1.0E-37 | Significa  | nt Effect       |                                        |             |
| Error               | 0.058331       |                | 0.0032     | 41              | 18            | Page 1   |          |            |                 |                                        |             |
| Total               | 1.95635        |                |            |                 | 23            |          |          |            |                 |                                        |             |
| Distributional Tes  | its            |                |            |                 |               |          |          |            |                 |                                        |             |
| Attribute           | Test           |                |            |                 | Test Stat     |          | P-Value  | Decision   |                 |                                        |             |
| Variances           |                | quality of Va  |            |                 | 2.27          | 15.1     | 0.8108   | Equal Va   |                 |                                        |             |
| Distribution        | Shapiro-V      | Wilk W Norn    | nality Tes | t               | 0.927         | 0.884    | 0.0821   | Normal I   | Distribution    |                                        |             |
| Proportion Fertilis | zed Summa      | ary            |            |                 |               |          |          |            |                 |                                        |             |
| Conc-%              | Code           | Count          | Mean       | 95% LCL         | 95% UCL       | Median   | Min      | Max        | Std Err         | CV%                                    | %Effect     |
| 0                   | RW             | 4              | 0.579      | 0.512           | 0.646         | 0.571    | 0.538    | 0.636      | 0.021           | 7.24%                                  | 0.00%       |
| 6.25                |                | 4              | 0.536      | 0.429           | 0.643         | 0.550    | 0.450    | 0.593      | 0.034           | 12.52%                                 | 7.46%       |
| 12.5                |                | 4              | 0.390      | 0.294           | 0.485         | 0.402    | 0.306    | 0.449      | 0.030           | 15.41%                                 | 32.70%      |
| 25                  |                | 4              | 0.149      | 0.113           | 0.186         | 0.145    | 0.128    | 0.180      | 0.012           | 15.42%                                 | 74.21%      |
| 50                  |                | 4              | 0.076      | 0.021           | 0.131         | 0.085    | 0.028    | 0.108      | 0.017           | 45.18%                                 | 86.83%      |
| 100                 |                | 4              | 0.014      | 0.000           | 0.034         | 0.015    | 0.000    | 0.029      | 0.006           | 85.75%                                 | 97.51%      |
| Angular (Correcte   | •              |                | •          |                 |               |          |          |            |                 |                                        |             |
| Conc-%              | Code           | Count          | Mean       | 95% LCL         | ······        | Median   | Min      | Max        | Std Err         | CV%                                    | %Effect     |
| 0                   | RW             | 4              | 0.865      | 0.797           | 0.933         | 0.857    | 0.824    | 0.923      | 0.021           | 4.94%                                  | 0.00%       |
| 6.25                |                | 4              | 0.822      | 0.714           | 0.929         | 0.836    | 0.736    | 0.879      | 0.034           | 8.20%                                  | 5.03%       |
| 12.5                |                | 4              | 0.673      | 0.574           | 0.773         | 0.687    | 0.587    | 0.734      | 0.031           | 9.26%                                  | 22.15%      |
| 25                  |                | 4              | 0.396      | 0.345           | 0.447         | 0.390    | 0.366    | 0.439      | 0.016           | 8.06%                                  | 54.22%      |
| 50                  |                | 4              | 0.273      | 0.156           | 0.390         | 0.295    | 0.167    | 0.335      | 0.037           | 26.86%                                 | 68.43%      |
| 100                 |                | 4              | 0.114      | 0.030           | 0.198         | 0.119    | 0.049    | 0.170      | 0.026           | 46.25%                                 | 86.80%      |

## **CETIS Analytical Report**

Report Date: Test Code: 12 Oct-15 11:26 (p 2 of 2) 26494Ap | 01-3500-8882



## PREPARATION OF DILUTIONS



| STUDY: Z6494                | CLIENT: ESS    | S Laboratories  |
|-----------------------------|----------------|-----------------|
| SPECIES: A. punctula        | ta             |                 |
| Diluent:<br>Receiving Water | Day: 0 Start   |                 |
| Concentration %             | Vol. Eff.(mls) | Final Vol.(mls) |
| Lab Salt                    | Ó              | 100             |
| RW                          | 0              |                 |
| 6.25%                       | 6.25           |                 |
| 12.5%                       | 12.5           |                 |
| 25%                         | 25             |                 |
| 50%                         | 50             |                 |
| 100%                        | 100            | $\bigcup$       |
| INITIALS:                   | EH             |                 |
| TIME:                       | 0925           |                 |
| DATE:                       | 09/24/15       |                 |

RW = Receiving Water

| ESS Lab# /509567 | Reporting Limits - NPDES               |                                            | Electonic Deliverables Excel Access PDF                    |                |                | <u></u>       | nded<br>c Co<br>nis    | Voi of Container Total S Suspecification Suspe | 1000ML X X X X  | 500ML X         | 40ML ×          | 500ML X X       | Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter | Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9 | Matt Miller-ESS Laboratory | SEE ATTACHED SHEET FOR LIMITS | pH: 7.82 s.u. @ 23.4C<br>Salinity: 1.1 PPT | TRC: 0.09                               | Diss. Oxygen: 6.81 mg/L |                                           | e) Received by: (Signature, Date & Time)  |  |
|------------------|----------------------------------------|--------------------------------------------|------------------------------------------------------------|----------------|----------------|---------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------|-------------------------------|--------------------------------------------|-----------------------------------------|-------------------------|-------------------------------------------|-------------------------------------------|--|
| ОДУ              |                                        | ır                                         |                                                            | NPDES BIOASSAY |                | PO#           |                        | # of Type of Container                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | т<br>д          | 1 P             | 2 <             | 1 P             | SW-Groundwater SW-Sur                                                                                                   | 1, 3-H2SO4, 4-HNO3, 8                                                                       |                            | SEE A                         |                                            |                                         | :                       | Relinquished by; (Signature, Date & Time) | Relinquished by: (Signature, Date & Time) |  |
| SUST             | ږ                                      | ME Other                                   | rcle)<br>Other                                             | NPD            |                | ď.            |                        | Pres<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | τ-              | က               | 8               | 4               | -Wastewater                                                                                                             | 1-NP, 2-HC                                                                                  |                            |                               |                                            |                                         |                         | Relinquished                              | Relinquished                              |  |
| CHAIN OF CUSTODY | Standard Other                         | Regulatory State: MA RI CT NH NJ NY ME     | ing:(please di<br>CT DEP                                   | Project Name   |                | 2142          |                        | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Receiving Water | Receiving Water | Receiving Water | Receiving Water | D-Solid D-Sludge WW                                                                                                     | Preservation Code:                                                                          | Sampled by:                | Comments:                     |                                            |                                         |                         |                                           |                                           |  |
| <u>2</u>         | St                                     | state: MA RI C                             | for any of the follow<br>Navy USACE                        |                |                | Cambridge, MA | James harrison2@veolia | Sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Receivir        | Receivir        | Receivir        | Receivír        | Matrix: S-Soil S                                                                                                        | e Only                                                                                      |                            |                               | ion MAA                                    |                                         |                         | 121/15                                    |                                           |  |
|                  | Turn Time                              | Regulatory S                               | ls this project<br>MA-MCP                                  | Project #      | Proj. Location | Cambr         | James.harr             | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MS              | SW              | SW              | MS              |                                                                                                                         | Internal Us                                                                                 | [ ] Pickup                 |                               | Tooloin MM                                 |                                         |                         | iture, Date & Time                        | ture, Date & Time                         |  |
|                  | <u></u>                                |                                            | <del>1</del>                                               |                |                | City, State   | email:                 | Grab -G<br>Composite-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Grab            | Grab            | Grab            | Grab            | VOA                                                                                                                     | 8                                                                                           |                            |                               |                                            |                                         |                         | Received by: (Signatury, Date & Time      | Received by: (Signature, Date & Time      |  |
|                  | neering, Inc.                          | 185 Frances Avenue, Cranston RI 02910-2211 | Tel. (401)461-7181 Fax (401)461-4486 www.esslaboratory.com | Veolia Kendall | James Harrison | 265 First St. | 03                     | Collection Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1300            | 1300            | 1300            | 1300            | Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA                                                           | Yes                                                                                         | No NA: x                   |                               | Silvering 57° ICE WOLLD                    | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                         | 9/21/15                                   |                                           |  |
| orator           | ielsch Engi                            | 4venue, Cra                                | -7181 Fax                                                  |                |                | 265           | 617-679-4803           | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9/21/15         | 9/21/15         | 9/21/15         | 9/21/15         | y G-Glass AG-Ar                                                                                                         | ×                                                                                           | Yes                        |                               | -                                          |                                         |                         | nature, Date & Tim                        | nature, Date & Tsm                        |  |
| ESS Laboratory   | Division of Thielsch Engineering, Inc. | 185 Frances                                | Tel. (401)461-7181 Far<br>www.esslaboratory.com            | Co. Name       | Contact Person | Address       | Tel.                   | ESS Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                 |                 |                 | Container Type: P-Pol                                                                                                   | Cooler Present                                                                              | Seals Intact               |                               | ŀ                                          |                                         |                         | Relinquished by: (Signature, Date & Time) | Reinquisped by: (Signature, Date & Time)  |  |

Please fax to the laboratory all changes to Chain of Custody
Report Method Blank & Laboratory Control Sample Results

collected in accordance with MADEP CAM VIIA Report Method Blai

<sup>\*</sup> By circling MA-MCP, client acknowledges sampels were

| b# /505569       | Approximation implies a second |                                              |                      | Electonic Deliverables Excel Access PDF | //ð' Cs        |                | Solids<br>nductand | nded<br>c Co | Total S<br>Susper<br>Specifi<br>Ammon | × × × ×              | ×                    | ×                    | ×                    | Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter | Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9 | Matt Miller-ESS Laboratory | SEE ATTACHED SHEET FOR LIMITS | Salinity: 1.2 PPT   | TRC: 0.10 | Diss. Oxygen: 6.01 mg/L | Received by: (Signature, Date & Time)     | Received by: (Signature, Date & Time)     |   |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------|-----------------------------------------|----------------|----------------|--------------------|--------------|---------------------------------------|----------------------|----------------------|----------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------|-------------------------------|---------------------|-----------|-------------------------|-------------------------------------------|-------------------------------------------|---|
| ESS Lab#         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                            | L                    |                                         |                | sisylı         | snA                |              | Vol of<br>container                   | 1000ML               | 500ML                | 40ML                 | 500ML                | rface Water D                                                                                                           | 5-NaOH, 6-1                                                                                 | Matt                       | TTACH                         | Sali                | •         | Diss. O                 | (a)                                       | (e)                                       |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l                                            |                      |                                         | SSAY           |                |                    |              | Type of<br>Container                  | ф                    | а.                   | >                    | α.                   | vater SW-Sur                                                                                                            | t, 4-HNO3, (                                                                                |                            | SEE A                         |                     |           |                         | e, Date & Tim                             | e, Date & Tim                             |   |
| TODY             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ner                                          |                      |                                         | NPDES BIOASSAY |                | PO#                |              | # of<br>Containers                    |                      | 1                    | 7                    | -                    | · GW-Groundv                                                                                                            | ICI, 3-H2SO4                                                                                |                            |                               |                     |           |                         | Relinquished by: (Signature, Date & Time) | Relinquished by: (Signature, Date & Time) |   |
| CUS              | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ME Oth                                       | (alc)                | other                                   | NPI            |                |                    |              | Pres<br>Code                          | -                    | 3                    | က                    | 4                    | N-Wastewater                                                                                                            | : 1-NP, 2-H                                                                                 |                            |                               |                     |           |                         | Relinquished                              | Relinquished                              |   |
| CHAIN OF CUSTODY | Standard Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | YN UN HN T                                   | wing follows cir     | E CT DEP                                | Project Name   |                | 2142               |              | Sample ID                             | Final Effluent       | Final Effluent       | Final Effluent       | Final Effluent       | D-Solid D-Sludge W                                                                                                      | Preservation Code                                                                           | Sampled by                 | Comments:                     |                     |           |                         |                                           |                                           |   |
| CH<br>CH         | X St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Regulatory State: MA RI CT NH NJ NY ME Other | for any of the follo | MA-MCP Navy USACE CT DEP Off            |                |                | Cambridge, MA      | ison2@veolia | Samp                                  | Final E              | Final E              | Final E              | Final E              | Matrix: S-Soil S                                                                                                        | e Only                                                                                      |                            |                               | ian MM              | <u> </u>  |                         | Juli                                      |                                           |   |
|                  | Tum Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Regulatory S                                 | le this project      | MA-MCP                                  | Project #      | Proj. Location | Cambr              | James.harri  | Matrix                                | ww                   | ww                   | ww                   | ww                   |                                                                                                                         | Internal Use                                                                                | [ ] Pickup                 |                               | [x] Technician MM   | •         |                         | Received by: (Signature, Date & Time)     | (Bignature, Date & Time)                  |   |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-2211                                       | <u>g</u>             | 2                                       |                | Ē              | City, State        | email:       | Grab -G<br>Composite-С                | Comp                 | Comp                 | Comp                 | Comp                 | -VOA                                                                                                                    | ٩<br>N                                                                                      | .  <br>. ×                 |                               |                     |           |                         | Received by: (Sign                        | Received by; Asign                        | 7 |
| <b>&gt;</b>      | Division of Thielsch Engineering, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 185 Frances Avenue, Cranston RI 02910-2211   | Eav (401)461-4486    | 0++-10+(10+)                            | Veolia Kendall | James Harrison | 265 First St.      | 03           | Collection Time                       | 0800 TO 0800         | 0800 TO 0800         | 0800 TO 0800         | 0800 TO 0800         | Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA                                                           | Yes                                                                                         | No NA:                     |                               |                     |           |                         | 19/6                                      | ) (e                                      |   |
| ESS Laboratory   | hielsch Engi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Avenue, Cra                                  | 1_7181 Eav           | oratory.com                             |                |                | 265                | 617-679-4803 | Date                                  | 9/20/15<br>TO9/21/15 | 9/20/15<br>TO9/21/15 | 9/20/15<br>TO9/21/15 | 9/20/15<br>TO9/21/15 | oly G-Glass AG-An                                                                                                       | ent x                                                                                       | Yes                        |                               | perature:           |           |                         | Relinquished by: (Signature, Date & Time) | Relinquished-by: (Signaturer-Date & Time) |   |
| ESS La           | Division of T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 185 Frances                                  | Tel (404)461-7484    | www.esslaboratory.com                   | Co. Name       | Contact Person | Address            | Tel.         | ESS Lab ID                            | 7                    | 7                    | 7                    | 7                    | Container Type: P-F                                                                                                     | Cooler Present                                                                              | Seals Intact               |                               | Cooler Temperature: |           |                         | Relinquished by: (Si                      | Relinquished-by: (Si                      |   |

collected in accordance with MADEP CAM VIIA

Report Method Blank & Laboratory Control Sample Results

<sup>\*</sup> By circling MA-MCP, client acknowledges sampels were

|                                           |                                                        |                                            |                                      |                             |                                                                                      |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | L                                                |                                                           |                                         |             |            | l           |           | ١      |     |
|-------------------------------------------|--------------------------------------------------------|--------------------------------------------|--------------------------------------|-----------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|-------------|------------|-------------|-----------|--------|-----|
| ESS La                                    | ESS Laboratory                                         | >                                          |                                      |                             | CH                                                                                   | CHAIN OF CUSTODY                                                                             | CUST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -ODY                                      | <del> </del>                                     | ESS Lab#                                                  |                                         | 1509 567    | S6         | 7           |           |        |     |
| Division of 1                             | <sup>-</sup> hielsch Eng                               | Division of Thielsch Engineering, Inc.     |                                      | Turn Time                   | X_Sta                                                                                | Standard Other                                                                               | er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                                  | 0                                                         | oji di T                                |             | NBDES      | , u         |           |        |     |
| 185 Frances                               | 3 Avenue, Cr                                           | 185 Frances Avenue, Cranston RI 02910-2211 | 0-2211                               | Regulatory S                | Regulatory State: MA RI CT NH NJ NY ME Other                                         | YN UN HN T                                                                                   | ME Oth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er                                        |                                                  | odav                                                      | - epolillig cililles                    |             | 7          | 2           |           | ł      |     |
| Tel. (401)461-7181 www.esslaboratory.     | Tel. (401)461-7181 Fax<br>www.esslaboratory.com        | Fax (401)461-4486                          | 98                                   | Is this project f<br>MA-MCP | s this project for any of the following:(please circle) MA-MCP Navy USACE CT DEP Ott | owing:(please circ<br>E CT DEP (                                                             | rde)<br>Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           |                                                  | Ele                                                       | Electonic Deliverables                  |             | Excel A    | Access      | PDF       |        |     |
| Co. Name                                  |                                                        | Veolia Kendall                             |                                      | Project#                    |                                                                                      | Project Name                                                                                 | NPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NPDES BIOASSAY                            | ίΑΥ                                              |                                                           |                                         |             |            |             | 19; Ca    |        |     |
| Contact Person                            |                                                        | James Harrison                             | ā                                    | Proj. Location              |                                                                                      |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                  | sisyl                                                     |                                         |             | ə          |             | M ,IA ,IN |        |     |
| Address                                   | 265                                                    | 265 First St.                              | City, State                          | Cambri                      | Cambridge, MA                                                                        | 2142                                                                                         | <u>a</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | #Od                                       |                                                  | sпА                                                       |                                         | Solids      | ouetanb    |             | 'uZ 'nO   |        |     |
| Tel.                                      | 617-679-4803                                           | 803                                        | email:                               | James.harri                 | James.harrison2@veolia                                                               |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                         |                                                  |                                                           |                                         | -           |            | Вii         | ·9а       | 886    |     |
| ESS Lab ID                                | Date                                                   | Collection Time                            | Grab -G<br>Composite-C               | Matrix                      | Sample ID                                                                            | le ID                                                                                        | Pres<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | # of<br>Containers                        | Type of<br>Container                             | Vol of<br>Container                                       | S letoT                                 | Susper      |            | ommA<br>DOT | Ca, Cr,   | Hardne |     |
| 3                                         | 9/23/15                                                | 1100                                       | Grab                                 | AS.                         | Receiving Water                                                                      | g Water                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                         | d                                                | 1000ML                                                    | ×                                       | x x         | ×          |             |           |        |     |
| ~                                         | 9/23/15                                                | 1100                                       | Grab                                 | SW                          | Receiving Water                                                                      | g Water                                                                                      | е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                         | ۵                                                | 500ML                                                     |                                         |             | ^          | ×           |           |        |     |
| æ                                         | 9/23/15                                                | 1100                                       | Grab                                 | sw                          | Receiving Water                                                                      | g Water                                                                                      | က                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                         | >                                                | 40ML                                                      |                                         |             |            | ×           |           |        |     |
| 3                                         | 9/23/15                                                | 1100                                       | Grab                                 | MS                          | Receiving Water                                                                      | g Water                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                         | Ь                                                | 500ML                                                     |                                         |             |            |             | ×         | ×      |     |
| Container Type: P-Poly                    |                                                        | G-Glass AG-Amber Glass S-Sterile V-VOA     | -VOA                                 |                             | Matrix: S-Soil SD                                                                    | SD-Solid D-Sludge WW-Wastewater GW-Groundwater                                               | -Wastewater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GW-Groundwat                              |                                                  | SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter | inking Water C                          | Oil W-W     | pes F-Filt | je          |           |        |     |
| Cooler Present                            |                                                        | x_Yes                                      | No                                   | Internal Use Only           |                                                                                      | Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9- | 1-NP, 2-HC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X, 3-H2SO4, 4                             | 1-HNO3, 5-N                                      | аон, 6-меон                                               | 1, 7-Asorbic                            | cid, 8-Zn   | Act, 9-    |             |           |        |     |
| Seals Intact                              | Yes                                                    | No NA:                                     | ×                                    | [ ] Pickup                  | -                                                                                    | Sampled by:                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                  | Matt Mill                                                 | Matt Miller-ESS Laboratory              | abora       | tory       |             |           |        |     |
|                                           |                                                        | 1001                                       |                                      |                             | -                                                                                    | Comments:                                                                                    | ?<br> 全                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | SEE AT                                           | SEE ATTACHED SHEET FOR LIMITS                             | SHEET                                   | OR LI       | MITS       |             |           |        |     |
| Cooler Temperature:                       | perature: 5                                            | 2/0 / C                                    | -//-                                 | [x] Technician MM           | ian MM                                                                               | 4.7.5//                                                                                      | A STATE OF THE STA |                                           |                                                  | pH: 7.61 s.u. @ 24.2C<br>Salinity: 1.2 PPT                | l: 7.61 s.u. @ 24.<br>Salinity: 1.2 PPT | 2; _<br>    |            |             |           |        |     |
|                                           |                                                        |                                            | 2                                    | •                           | -                                                                                    | 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | Ċ                                                | TRO                                                       | TRC: 0.14                               | 1/20        |            |             |           |        | . , |
|                                           |                                                        |                                            | :                                    |                             |                                                                                      |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | ֓֞֞֜֜֜֞֜֜֜֓֓֓֓֓֓֓֓֜֜֜֜֓֓֓֓֓֓֓֜֜֜֜֓֓֓֓֜֜֜֜֓֓֓֜֜֜֜ | DISS. Oxyg                                                | Oxygen: 7.70 mg/L                       | 111g/L      | 9,000<br>H | -           |           |        | Т   |
| Relinquished by: (Signature, Date & Time) | ignature, Date & Tir                                   | 1/82/1                                     | Received by: (Signature Oate & Time) | latura Date & Time)         | 123/15                                                                               | 700                                                                                          | Keiinquisned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Keindusned by: (Signature, Date & Time)   | Jate & Time)                                     | <b>.</b>                                                  | received by. (a                         | gilatore,   | מוב מ      | <u>.</u>    |           |        |     |
| Kelinquished by Ke                        | Kelinquished by: Adignature, Date & Time)              |                                            | Received by: (Sign                   | y: (Signature, Date & Time) |                                                                                      |                                                                                              | Refinquished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Refinquished by: (Signature, Date & Time) | Date & Time)                                     | <u></u>                                                   | Received by: (Signature, Date & Time)   | ignature, D | late & Tim | (e          |           |        |     |
| * By circling MA-MC                       | * By circling MA-MCP, client acknowledges sampels were | dges sampels were                          |                                      |                             | Please fax to the laboratory all changes to Chain of Custody                         | laboratory all cha                                                                           | anges to C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hain of Cust                              | hoo                                              |                                                           |                                         |             |            |             |           |        | 1   |

<sup>\*</sup> By circling MA-MCP, client acknowledges sampels were

collected in accordance with MADEP CAM Villa

Report Method Blank & Laboratory Control Sample Results

7.53

| ESS Laboratory                                  | oorator              | >                                                            |                        |                                                    | 끙                      | CHAIN OF CUSTODY                                                                                                        | CUST           | -ODY                                      |                      | ESS Lab#                                                                        | #                                                                  | 251                         | L956Q51    | ٥            | 7         |        |   |
|-------------------------------------------------|----------------------|--------------------------------------------------------------|------------------------|----------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------|----------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------|------------|--------------|-----------|--------|---|
| Division of Th                                  | iielsch Eng          | Division of Thielsch Engineering, Inc.                       |                        | Turn Time                                          | X_St&                  | Standard Other                                                                                                          |                |                                           |                      | Qued                                                                            | Reporting Limits                                                   |                             | SHUM       | . 0.         |           |        |   |
| 185 Frances                                     | Avenue,Cr            | 85 Frances Avenue, Cranston RI 02910-2211                    | 0-2211                 | Regulatory Sta                                     | tate: MA RI C          | ite: MA RI CT NH NJ NY ME Other                                                                                         | ME Othe        | ər                                        |                      | odovi                                                                           | Similar Brimin                                                     |                             | 5<br>[     |              |           | i      |   |
| Fel. (401)461-7181 Fax<br>www.esslaboratory.com | -7181 Fay            | el. (401)461-7181 Fax (401)461-4486<br>ww.esslaboratory.com  | 9                      | Is this project for MA-MCP N                       |                        | /ing:(please cir<br>CT DEP                                                                                              | cle)<br>Other  |                                           |                      | ela                                                                             | Electonic Deliverables                                             |                             | Excel /    | Access       | , PDF     |        |   |
| co. Name                                        |                      | Veolia Kendall                                               |                        | Project#                                           |                        | Project Name                                                                                                            | NPD            | NPDES BIOASSAY                            | ΑY                   |                                                                                 |                                                                    |                             |            |              | 19, Ca    |        |   |
| Contact Person                                  |                      | James Harrison                                               | Ľ                      | Proj. Location                                     |                        | :                                                                                                                       |                |                                           |                      | sisyl                                                                           |                                                                    |                             | 90         |              | M ,IA ,iM |        |   |
| vddress                                         | 265                  | 265 First St.                                                | City, State            | Cambrid                                            | idge, MA               | 2142                                                                                                                    | <u>ā</u>       | PO#                                       |                      | snA                                                                             |                                                                    | sbiloS                      | nductano   |              | Cu, Zn,   |        |   |
| e.                                              | 617-679-4803         |                                                              | email:                 | James.harr                                         | James.harrison2@veolia |                                                                                                                         |                |                                           |                      |                                                                                 | sblio                                                              |                             |            | E(L          | 'qa       | SS     |   |
| ESS Lab ID                                      | Date                 | Coffection Time                                              | Grab -G<br>Composite-C | Matrix                                             | Sample ID              | ole ID                                                                                                                  | Pres Code      | # of<br>Containers                        | Type of<br>Container | Vol of<br>Container                                                             | S lstoT                                                            | S <i>us</i> per<br>Alkalini |            | Ammoi<br>TOC | Cq' Ct'   | Hardne |   |
| h                                               | 9/22/15<br>TO9/23/15 | 0800 TO 0800                                                 | Comp                   | ww                                                 | Final Effluent         | ffluent                                                                                                                 | 1              | 1                                         | р                    | 1000ML                                                                          | ×                                                                  | ×                           | ×          |              |           |        |   |
| 7                                               | 9/22/15<br>T09/23/15 | 0800 TO 0800                                                 | Comp                   | ww                                                 | Final E                | Final Effluent                                                                                                          | 3              | 1                                         | Ч                    | 500ML                                                                           |                                                                    |                             |            | ×            |           |        |   |
| 4                                               | 9/22/15<br>T09/23/15 | 0800 TO 0800                                                 | Comp                   | ww                                                 | Final Effluent         | ffluent                                                                                                                 | 3              | 2                                         | >                    | 40ML                                                                            |                                                                    |                             |            | ×            |           |        |   |
| 4                                               | 9/22/15<br>TO9/23/15 | 0800 TO 0800                                                 | Comp                   | ww                                                 | Final E                | Final Effluent                                                                                                          | 4              | -                                         | ۵.                   | 500ML                                                                           |                                                                    |                             |            |              | <u>×</u>  | ×      |   |
| ontainer Type: P-Po                             | y G-Glass AG-Ar      | ontainer Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA | VOA                    |                                                    | Matrix: S-Soil SI      | Matrix: S.Soii SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter | -Wastewater    | GW-Groundwate                             | er SW-Surfac         | e Water DW-Dr                                                                   | inking Water                                                       | 0-Oil W-W                   | /ipes F-Fi | lter         |           |        |   |
| Cooler Present                                  | nt                   | Yes                                                          | No                     | Internal Use                                       | e Only                 | Preservation Code: 1-NP, 2-HCI, 3-HZSO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9-                            | 1-NP, 2-HC     | il, 3-H2SO4, 4                            | -HNO3, 5-N           | aOH, 6-MeOF                                                                     | f, 7-Asorbic                                                       | Acid, 8-Zı                  | nAct, 9    |              |           |        |   |
| Seals Intact_                                   | Yes                  | No NA:                                                       | ×                      | [] Pickup                                          |                        | Sampled by:                                                                                                             |                |                                           |                      | Matt Miller-ESS Laboratory                                                      | er-ESS                                                             | _abora                      | itory      |              |           |        |   |
| Sooler Temperature: 💆                           | erature: 5           | -4 chin                                                      | 16                     | [x] Technicia                                      | MM                     | Comments: (c)                                                                                                           | 3.3            |                                           | SEE AT               | SEE ATTACHED SHEET FOR LIMITS pH: 7.35 s.u. @ 26.3C Salinity: 1.4 PPT TRC: 0.17 | CHED SHEET FO<br>T.35 s.u. @ 26.<br>Salinity: 1.4 PPT<br>TRC: 0.17 | FOR L<br>6.3C<br>T          | IMITS      |              |           |        |   |
|                                                 |                      |                                                              |                        |                                                    |                        | <b>*</b>                                                                                                                |                |                                           | ۵                    | Diss. Oxygen: 6.50 mg/l                                                         | en: 6.50                                                           | mg/L                        |            |              |           |        | T |
| kelinquished by; (Signature, Date & Time)       | hature, Date & Tim   | - 1/13                                                       | Received by: (Sign     | <b>18 40</b> Received by: (Signature, Date & Time) | 11/67                  | 0051                                                                                                                    | Relinquished b | Relinquished by: (Signature, Date & Time) | rate & Time)         | 4.                                                                              | Received by: (Signature, Date & Time)                              | Signature, I                | Date & Tin | ne)          |           |        |   |
| Kelinquished by-(Signature, Date & Time)        | nature, Date & Tim   | (91                                                          | Received by (Mgn       | &gnature, Date & Time)                             |                        |                                                                                                                         | Relinquished t | Relinquished by: (Signature, Date & Time) | ate & Time)          |                                                                                 | Received by: (Signature, Date & Time)                              | Signature, I                | Date & Tir | ne)          |           |        |   |
|                                                 |                      |                                                              |                        |                                                    |                        | ]                                                                                                                       |                |                                           | -                    |                                                                                 |                                                                    |                             |            |              |           |        |   |

\* By circling MA-MCP, client acknowledges sampels were

collected in accordance with MADEP CAM VIIA

Please fax to the laboratory all changes to Chain of Custody
Report Method Blank & Laboratory Control Sample Results

1. 2.

| ESS Lab # /509Sb7 | Pandly stimit solution                 | Nepotiang Elinius                          | Electonic Deliverables Excel Access PDF | lg. Ca         | -              |               | ity<br>c Cor<br>nia    | Ammo:                  | 1000ML x x x x  | SOOML           | 40ML X          | SOOML X X       | Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Dil W-Wipes F-Filter | Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9 | Matt Miller-ESS Laboratory | SEE ATTACHED SHEET FOR LIMITS | pH: 7.03 s.u. @ 22.2C | Salinity: 1.3 PPT             | IRC: 0.1/<br>Oxvaen: 6.93 ma/L                               | Received by: (Signature, Date & Time)     |                                        | Received by: (Signature, Date & Time)     |   |  |
|-------------------|----------------------------------------|--------------------------------------------|-----------------------------------------|----------------|----------------|---------------|------------------------|------------------------|-----------------|-----------------|-----------------|-----------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------|-------------------------------|-----------------------|-------------------------------|--------------------------------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------------|---|--|
| ESS               |                                        |                                            |                                         | ٨              |                |               |                        | Type of Vo             | р 100           | P 50            | V 40            | P 50            | SW-Surface Wat                                                                                                          | HNO3, 5-NaOH                                                                                | Ma                         | SEE ATTAC                     | Ρď                    | (I)                           | Diss                                                         | ite & Time)                               |                                        | ste & Time)                               |   |  |
| ТОБУ              |                                        | ner                                        |                                         | NPDES BIOASSAY |                | PO#           |                        | # of<br>Containers     | 1               | 1               | 2               | 1               | r GW-Groundwater                                                                                                        | ICI, 3-H2SO4, 4-I                                                                           | :                          |                               | . د                   | Į.                            | ſ.                                                           | Relinquished by: (Signature, Date & Time) |                                        | Relinquished by: (Signature, Date & Time) |   |  |
| CUS.              | er                                     | ME Other                                   | rde)<br>Other                           | NPI            |                |               |                        | Pres<br>Code           | 1               | 3               | 3               | 4               | N-Wastewater                                                                                                            | : 1-NP, 2-H                                                                                 |                            | 1                             |                       | 1 2010                        | - 19<br>- 19<br>- 19<br>- 19<br>- 19<br>- 19<br>- 19<br>- 19 | Relinquished                              | ,s:                                    | Relinquished                              |   |  |
| CHAIN OF CUSTODY  | Standard Other                         | e: MA RI CT NH NJ NY ME                    | ng:(please di<br>CT DEP                 | Project Name   |                | 2142          |                        | Sample ID              | Receiving Water | Receiving Water | Receiving Water | Receiving Water | D-Solid D-Sludge WA                                                                                                     | Preservation Code                                                                           | Sampled by:                | Comments:                     | pleast hot            |                               | 200                                                          | <u> </u>                                  | 1.624                                  |                                           |   |  |
| 당                 | X St                                   | ate: MA RI                                 | for any of the following Navy USACE     | i<br>i         | :              | Cambridge, MA | James harrison2@veolia | Sam                    | Receivir        | Receivir        | Receivir        | Receivir        | Matrix: S-Soil S                                                                                                        | Only                                                                                        |                            |                               |                       | an_MM                         |                                                              |                                           | 40/1                                   |                                           |   |  |
|                   | Turn Time                              | Regulatory Stat                            | ts this project for MA-MCP Na           |                | Proj. Location | Cambri        | James.harris           | Matrix                 | SW              | SW              | MS              | SW              |                                                                                                                         | Internal Use (                                                                              | [ ] Pickup                 |                               |                       | [x] Technician_MM             |                                                              | ature date & Time)                        | s'i                                    | Received by (Signature, Date & Time)      |   |  |
|                   |                                        | 0-2211                                     | 9                                       |                | <u> </u>       | City, State   | email:                 | Grab -G<br>Composite-C | Grab            | Grab            | Grab            | Grab            | VOA                                                                                                                     | N<br>N                                                                                      | ×                          |                               |                       | \                             | <b>~</b>                                                     | Received by: (Signature                   | 7                                      | Received by (Sign                         | 1 |  |
|                   | neering, Inc.                          | 185 Frances Avenue, Cranston RI 02910-2211 | Fax (401)461-4486                       | Veolia Kendall | James Harrison | 265 First St. | 03                     | Collection Time        | 0855            | 0855            | 0855            | 0855            | Container Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA                                                           | Yes                                                                                         | No NA: x                   | •                             | ر در در               | Cooler Temperature: 5.6 C C C | )<br>Solu                                                    | ~                                         | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                                           |   |  |
| boratory          | iielsch Engi                           | -<br>Avenue,Cra                            | I-7181 Fax                              |                |                | 265 F         | 617-679-4803           | Date                   | 9/25/15         | 9/25/15         | 9/25/15         | 9/25/15         | alv G-Glass AG-An                                                                                                       | int                                                                                         | Yes                        |                               | ,                     | perature: 2                   |                                                              | nature, Date & Tim                        | 11                                     | Ggrature, Date & Time                     |   |  |
| ESS Laboratory    | Division of Thielsch Engineering, Inc. | 185 Frances                                | Tel. (401)461-7181 Fax                  | Co. Name       | Contact Person | Address       | Tel.                   | ESS Lab ID             | ın              | N               | N               | N               | Container Type: P-Po                                                                                                    | Cooler Present                                                                              | Seals Intact               | •                             |                       | Cooler Temp                   |                                                              | Reinquished by: (Signature, Date & Time)  | -                                      | Reinquished by: (erg                      | \ |  |

<sup>\*</sup> By circling MA-MCP, client acknowledges sampels were collected in accordance with MADEP CAM VIIA

Please fax to the laboratory all changes to Chain of Custody
Report Method Blank & Laboratory Control Sample Results

|                  |                                       |                                           |                                                             |                |                |                                               | _                      |                        |                      |                      |                      |                      | _                                                                                                                       | _                                                                                            | _                          | _                             |                       |                                | _                 |                                          |                                           |   |                                                              |
|------------------|---------------------------------------|-------------------------------------------|-------------------------------------------------------------|----------------|----------------|-----------------------------------------------|------------------------|------------------------|----------------------|----------------------|----------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------|-------------------------------|-----------------------|--------------------------------|-------------------|------------------------------------------|-------------------------------------------|---|--------------------------------------------------------------|
|                  |                                       |                                           |                                                             |                |                | _                                             |                        |                        |                      |                      |                      |                      |                                                                                                                         |                                                                                              |                            |                               |                       |                                |                   |                                          |                                           |   |                                                              |
|                  |                                       |                                           | POF                                                         | po '6u         | I, A, iN       |                                               |                        | Hardn                  |                      | -                    |                      | ×                    |                                                                                                                         |                                                                                              |                            |                               |                       |                                |                   |                                          |                                           |   |                                                              |
|                  |                                       | ١                                         |                                                             |                | N IV IN        | 02 113                                        | 40                     | 100T                   |                      | $\overline{}$        | ×                    |                      |                                                                                                                         |                                                                                              |                            |                               |                       |                                |                   |                                          |                                           |   |                                                              |
| 7                | ES.                                   |                                           | Access                                                      |                |                |                                               | sin                    | ommA                   |                      | ×                    |                      |                      | Filter                                                                                                                  |                                                                                              | i                          | "                             |                       |                                |                   | ime)                                     | me)                                       | : |                                                              |
| 25               | NPDES                                 | ١                                         | Excel                                                       |                | əo             | nductan                                       | იეა                    | Specifi                | ×                    |                      |                      |                      | pes F-                                                                                                                  | Act, 9-                                                                                      | tony                       | MITS                          |                       |                                |                   | ate & T                                  | ate & T                                   |   |                                                              |
| 96               |                                       |                                           |                                                             |                |                |                                               | <b>Y</b> ti            | Alkalin                | ×                    |                      |                      |                      | i w-wi                                                                                                                  | 1, 8-Zn                                                                                      | oora                       | RLI                           | ပ                     |                                | g/L               | ature, D                                 | ature, D                                  |   |                                                              |
| 1509567          | its                                   |                                           | liverab                                                     |                |                | Solids                                        | рари                   | gnabei                 | <u>×</u>             |                      |                      |                      | er 0-0                                                                                                                  | oic Acid                                                                                     | Lat                        | 1 FO                          | 31.1                  | F<br>L                         | 59 m              | r. (Signa                                | y: (Sign:                                 |   |                                                              |
|                  | Reporting Limits -                    |                                           | Electonic Deliverables                                      |                |                | •                                             | sblio                  | S lstoT                | ×                    |                      |                      |                      | Drinking Wate                                                                                                           | H, 7-Asorb                                                                                   | ler-ESS                    | SHEE                          | s.u. @                | Salinity: 1.4 PPT<br>TRC: 0.19 | Oxygen: 6.59 mg/L | Received by: (Signature, Date & Time)    | Received by: (Signature, Date & Time)     |   |                                                              |
| ESS Lab#         | Rep                                   |                                           | Ē                                                           |                | sisyl          | snA                                           |                        | Vol of<br>Container    | 1000ML               | SOOML                | 40ML                 | SOOML                | e Water DW-C                                                                                                            | taOH, 6-MeC                                                                                  | Matt Miller-ESS Laboratory | SEE ATTACHED SHEET FOR LIMITS | pH: 7.00 s.u. @ 31.1C | Salini                         | Diss. Oxy         |                                          |                                           |   |                                                              |
| <u> </u>         |                                       |                                           | -                                                           | SAY            |                |                                               |                        | Type of<br>Container   | c.                   | Ъ                    | >                    | ۵                    | iter SW-Surfac                                                                                                          | 4-HNO3, 5-h                                                                                  |                            | SEE AT                        |                       |                                |                   | Date & Time)                             | Date & Time)                              |   | stody                                                        |
| ODY              |                                       | eľ                                        |                                                             | NPDES BIOASSAY |                | # Od                                          |                        | # of<br>Containers     | -                    | 1                    | 2                    | 1                    | GW-Groundwa                                                                                                             | SI, 3-H2SO4,                                                                                 |                            |                               | ,                     | na lysis                       |                   | Reinquished by: (Signature, Date & Time) | Relinquished by. (Signature, Date & Time) |   | hain of Cu                                                   |
| CUST             |                                       | ME Uther                                  | cle)<br>Other                                               | NPD            |                | <u>a.                                    </u> |                        | Pres<br>Code           | -                    | ၉                    | က                    | 4                    | /-Wastewater                                                                                                            | 1-NP, 2-H(                                                                                   |                            | -                             | =<br>S<br>≤∠          | ह<br>ह                         |                   | Relinquished                             | Relinquished                              |   | anges to C                                                   |
| CHAIN OF CUSTODY | Standard Other                        | RI CT NH NJ NY ME                         | ing:(please cir<br>CT DEP                                   | Project Name   | :              | 2142                                          |                        | Sample ID              | Final Effluent       | Final Effluent       | Final Effluent       | Final Effluent       | Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater GW-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wipes F-Filter | Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-NaOH, 6-MeOH, 7-Asorbic Acid, 8-ZnAct, 9- | Sampled by:                | Comments:                     | V Caso                | Camples the analysis           | •                 | 2.4                                      |                                           |   | Please fax to the laboratory all changes to Chain of Custody |
| 유                | $ \times $                            | e: MA                                     |                                                             |                |                | Cambridge, MA                                 | James harrison2@veolia | Sam                    | Final E              | Final E              | Final E              | Final                | Matrix: S-Soil S                                                                                                        | only                                                                                         |                            |                               |                       | ian_MM                         |                   | 25/15 1624                               |                                           |   | Please fax to th                                             |
|                  | Turn Time                             | Regulatory Stat                           | Is this project for MA-MCP No                               | Project #      | Proj. Location | Cambri                                        | James harri            | Matrix                 | ww                   | ww                   | MM                   | ww                   |                                                                                                                         | Internal Use Only                                                                            | [ ] Pickup                 |                               |                       | [x] Technician_MM_             |                   | Received by: (Signalurg) Date & Time)    | Received (Fignature, Date & Time)         |   |                                                              |
|                  |                                       | 0-2211                                    | (O                                                          |                | ۰              | City, State                                   | email:                 | Grab -G<br>Composite-C | Сотр                 | Сотр                 | Сотр                 | Comp                 | VOA                                                                                                                     | S<br>S                                                                                       | ×                          |                               |                       |                                |                   | Received by: (Sig                        | Received (Sig                             | · |                                                              |
|                  | neering, Inc.                         | 85 Frances Avenue, Cranston RI 02910-2211 | el. (401)461-7181 Fax (401)461-4486<br>ww.esslaboratory.com | Veolia Kendall | James Harrison | 265 First St.                                 | 03                     | Collection Time        | 0800 TO 0800         | 0800 TO 0800         | 0800 TO 0800         | 0800 TO 0800         | ontainer Type: P-Poly G-Glass AG-Amber Glass S-Sterile V-VOA                                                            | Yes                                                                                          | No NA: x                   |                               |                       |                                |                   | 1530                                     | 2                                         |   | ges sampels were                                             |
| SS Laboratory    | ivision of Thielsch Engineering, Inc. | Avenue, Cra                               | el. (401)461-7181 Fax ww.esslaboratory.com                  |                | , j            | 265 F                                         | 617-679-4803           | Date                   | 9/24/15<br>TO9/25/15 | 9/24/15<br>TO9/25/15 | 9/24/15<br>TO9/25/15 | 9/24/15<br>TO9/25/15 | oly G-Glass AG-Am                                                                                                       | ent                                                                                          | Yes                        |                               |                       | oerature:                      |                   | einquished by: (Signature Date & Time    | ished by: (Signature, Date & Time         |   | By circling MA-MCP, client acknowledges sampels were         |
| SS Lal           | ivision of TI                         | 85 Frances                                | el. (401)461<br>ww.esslabc                                  | o. Name        | ontact Person  | ddress                                        |                        | ESS Lab ID             | ع                    | ٩                    | ٩                    | c                    | ntainer Type: P-Pc                                                                                                      | Cooler Present                                                                               | seals Intact               |                               |                       | Sooler Temperature:            |                   | elinquished by: (Sig                     | eling shed by: (Sig                       |   | By circling MA-MC                                            |

By circling MA-MCP, client acknowledges sampels were collected in accordance with MADEP CAM VIIA

Report Method Blank & Laboratory Control Sample Results

田 S I

EnviroSystems, Inc. 1 Lafayette Road Hampton, NH 03842

Voice: 603-926-3345 FAX: 603-926-3521

3 .f3 1509569

ESI Job No:

ERR 2:55 PM Time: CDPP7DCR StartSample id N=Not needed Special Instructions:
er F=Done in field

L=Lab to do CDPP7DCR StartDiluent ESS Laboratory - Kendall Station 8 Date: Task: Date: 3 z z Joe Sirbak Matrix S≍Solid N W=Water F email: Jsirbak@thielsch.com P0604 Water Water Field Preser-vation Project Manager: Received at Lab By: Project Number: 4 C 4 C Project Name: Received By: Type (P/G/T) CHAIN OF CUSTODY DOCUMENTATION ۵. Ω. Container Size (mL) ( 3750 3750 Time: 1455 ဍ က က Sampled Grab
By or composite (G/C) Address: Hopkinton, MA 01748 Time: S 9/21/13 27 508-435-9912 Address: 5 Avenue D Contact: Joe Sirbak 09/2015 030cc Date Time Sampled Sampled | |30c Date: On built Fax: 508-435-9244 x4720 002 Receiving Water Start ESS Laboratory NPDES:
er Your Field ID:
(must agree with
container) Joe Sirbak Joe Sirbak 001 Effluent Start Relinquished By: Relinquished By: Protocol: NP Lab Number Invoice to: Report to: (assigned by lab) Client: Voice: ω

Comments: Marine chronic assays will be conducted if effluent PPT is >1 at time of collection.

7

Voice: 603-926-3345 FAX: 603-926-3521

ESI Job No:

|                                                          | Dak    Pilter   Analyses Requested!   Pubore in field   Instructions:   Pubore to do do         | Analyses Requested\ d Special Instructions: sto                                                        |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Joe Sirbak<br>sch.com                                    | Sch.com  Matrix Filter Analyse S=Solid N=Not needed Special W=Water F=Done in field L=Lab to do | Eliter Filter                                                                                          |
| Project Manager: Joe Sirb<br>email: Jsirbak@thielsch.com | oject Manager: Joe S<br>nail: Jsirbak@thielsch.c<br>Field Matri<br>ype Freser s=soil            | oject Manager: Joe S nail: Jsirbak@thielsch.c  Field Matri Preser- S=Soil v@rn vation W=Wa P 4 C Water |
| , 01748                                                  | Grab Containe or com- No Size (mL) (GC)                                                         | Grab Containe or com- (G/C) (G/C) (G/C) 3 3750                                                         |
| 508-435-9912                                             | Grab<br>or com-<br>posite<br>(G/C)                                                              | Grab<br>or com-<br>posite<br>(G/C)                                                                     |
| Fax: 508-435-9912                                        |                                                                                                 | te Time Sampled By                                                                                     |
| 244 X4120                                                | 44 X47 Z0                                                                                       | NPDES  r Your Field ID: (must agree with container)  603 Effluent First Renewal                        |
| l                                                        | 0 6                                                                                             | 12 6 1 E                                                                                               |

ㅎ

Sept 2015

Sample Delivery Group No:

1509569

As part of each daily renewal procedure, pH, specific conductance, dissolved oxygen, and temperature must be measured at the beginning and end-officach 24-hour period in each dilution and the controls. It is also recommended that total alkalinity and total hardness be measured in the control and highest effluent concentration on the Day 1, 3, and 5 samples. The following chemical analyses shall be performed for each sampling event.

|                                   | · —— · · · · · · · · · · · · · · · · · |                                   | <u>Minimum</u>       |
|-----------------------------------|----------------------------------------|-----------------------------------|----------------------|
|                                   |                                        |                                   | <b>Quantificatio</b> |
|                                   | interpretation of Files                | ×ão €imeo di merco por constante. | <u>n Level</u>       |
| Parameter                         | Efflu                                  | ent Dilu                          | ent (mg/L)           |
| Hardness *1                       | X                                      | X                                 | 0.5                  |
| Alkalinity                        | X                                      | x                                 | 2.0                  |
| ₽PH                               | x                                      | x                                 |                      |
| Specific Conductance              | x                                      | х                                 |                      |
| Total Solids and Suspended Solids | x                                      | x                                 |                      |
| Ammonia                           | X                                      | x                                 | 0.1                  |
| Total Organic Carbon              | X                                      | х                                 | 0.5                  |
| Total Residual Chlorine (TRC) *2  | x                                      | x                                 | .0.05                |
| Dissolved Oxygen                  | x                                      | x                                 | 1.0                  |
| Total Metals                      |                                        |                                   | ž.                   |
| <b>√</b> Cd                       | x                                      | x                                 | 0,001                |
| <b>/</b> Cr                       | x                                      | x                                 | 0.005                |
| Pb                                | x                                      | х                                 | 0.005                |
| Cu                                | x                                      | x                                 | 0.0025               |
| Zn                                | x                                      | х                                 | 0.0025               |
| VNi                               | x                                      | x                                 | 0.004                |
| <b>√</b> A!                       | x                                      | x                                 | 0.02                 |
| <b>√</b> Mg, Ca                   | x                                      | х                                 | 0.05                 |

## Superscripts:

Method 2340 B (hardness by calculation) from APHA (1992) Standard Methods for the Examination of Water and Wastewater. 18th Edition.

- Either of the following methods from the 18th Edition of the APHA <u>Standard Methods</u> for the Examination of Water and Wastewater must be used for Total Residual Chlorine analyses:
  - -Method 4500-CL E Low Level Amperometric Titration (the preferred method);
  - -Method 4500-CL G DPD Colorimetric Method.

or use USEPA Manual of Methods Analysis of Water and Wastes, Method 330.5.